《水电水利工程勘测数字化产品交付技术规范》(征求意见稿)编制说明

《水电水利工程勘测数字化产品交付技术规范》 团体标准 起草工作组 二〇二五年十月

《水电水利工程勘测数字化产品交付技术规范》(征求意见稿)编制说明

一、工作简况

1.1 项目背景

近年来,随着西部水电工程开发的再度兴起、国内抽水蓄能电站工程建设规模也在不断扩大,水电行业对勘测数据的准确性和实时性要求越来越高。同时,水电工程涉及的地形、地质条件复杂,对勘测技术和工具的数字化转型提出了迫切要求,而数字化产品交付作为数字化转型的一项最重要的工作内容可以提高项目履约的效率和质量,在当前各大设计院系统的勘测设计合同中,大多都对数字化产品交付做了相关约定,但目前行业内尚未形成统一的勘测数字化产品交付标准,导致不同项目、不同建设单位、不同设计单位之间的数据互通性差,增加了信息传递的成本和时间,也不利于水电水利行业勘测数字化工作的高质量发展。因此,制定水电工程勘测数字化产品交付技术规范,规范水电水利工程勘测数字产品的生成、格式、存储和交付流程,提高信息交付的标准化程度,确保勘测数据的可靠性和准确性,使其能够有效服务于设计、施工和运营管理等阶段。同时,通过建立统一的数据格式和接口规范,促进不同单位、项目之间的数据共享与集成,提升项目协同能力,也为项目管理者、决策者提供高质量的数字化勘测数据支持。

经调研,目前水电水利行业暂无勘测数字化产品交付标准,各阶段勘测产品交付多数依赖于合同约定。相关行业中,国家标准《建筑信息模型应用统一标准》(GB/T 51212-2016)规定了建筑工程中BIM的基本概念、技术要求及应用流程,旨在指导BIM技术在建筑行业的应用,未聚焦于水电行业及勘测产品,对水电工程的勘测数字化产品交付指导有限;石油化工行业制定了《石油化工工程数字化交付标准》(GB/T51296-2018)对石油化工工程的数字化产品交付进行了详细规定,但由于行业壁垒,相关规定对水电行业参考有限;广州、深圳各地也相应出台了数字化设计产品的交付标准,如广州市《施工图三维数字化交付数据标准》、深圳市《建筑工程勘察信息模型交付标准》(SJG145-2023),这些地方标准一定程度上指导了相关行业的数字化交付工作,其技术要求可在一定程度上为水电行业提供参考。

水电水利行业目前暂未有专门的勘测数字化产品交付行业或国家标准,中国电建西北院企业标准《水电水利工程地质三维建模技术规程》(Q/NWE.J.IDMO1.19-2024)对勘测数字

化产品的成果交付作了初步约定,但产品交付对象主要为设计专业,未形成系统性的交付标准体系。

因此,现阶段亟需编制水电工程勘测数字化产品交付标准,以指导水电水利工程勘测数字化产品交付工作,促进水电水利工程勘测数字化工作高质量发展。

1.2 任务来源

根据中国科技产业化促进会标准化工作委员会相关文件要求,计划制定《水电水利工程勘测数字化产品交付技术规范》团体标准,由中国电建集团西北勘测设计研究院有限公司牵头,联合三峡新能源山阳发电有限公司、成都理工大学等单位起草该标准。

二、本标准编制原则与依据

2.1 标准编制原则

2.1.1 一致性

本规范的编制一定程度上考虑了在我国现行法律、政策环境下对《水电水利工程勘测数字化产品交付技术规范》团体标准施行的可操作性,同时对国内外相关方面的现行标准给予了应有的关注,以确保本规范与有关法律法规、其他标准的兼容性和一致性,且确保与国家标准、行业标准中的术语和词汇保持一致,采用国家标准中规定的术语和广大用户熟悉的词汇。

2.1.2 科学合理性

本规范编制遵循"科学、适度、可行"原则,既考虑标准前瞻性又兼顾水电水利工程勘测数字化产品交付的客观条件和生产实际,使得水电水利工程勘测数字化产品交付有章可循,有据可依。

2.1.3 可扩充性

本规范的内容并非一成不变,将随着社会经济条件的发展和相关国际标准、国家标准、行业标准的不断完善而进行充实和更新。

2.1.4 规范性

本规范按照 GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定编写。

2.2 编制依据

- 《工程测量通用规范》GB 55018
- 《水力发电工程地质勘察规范》GB 50287
- 《岩土工程勘察规范》GB 50021
- 《测绘成果质量检查与验收》GB/T 2435
- 《数字测绘成果质量要求》GB/T 17941
- 《建筑信息模型分类和编码标准》GB/T 51269
- 《建筑信息模型设计交付标准》GB/T 51308

《基础地理信息数字成果 1:5000、1:10000、1:25000、1:50000、1:100000 数字高程模型》 CH/T 9009.2

《基础地理信息数字成果 1:5000、1:10000、1:25000、1:50000、1:100000 数字正射影像。 图》CH/T 9009.3

三、本规范的范围和主要技术内容

3.1 范围

本规范适用于适用于大、中型水电水利工程(含抽水蓄能工程)的勘测数字化产品交付, 其他工程勘测数字化产品交付可参照执行。

3.2 主要技术内容

本规范主要技术内容包括:

- (1) 总则:确定本规范的制定目的、依据与适用范围;
- (2) 术语: 规定本规范涉及的专业名词定义及解释;
- (3)基本规定:规定数字化勘测产品交付的基本要求以及数字化勘测产品的生产技术要求;
- (4) 交付内容与形式: 规定不同勘测阶段交付勘测数字化产品的类型、精度及数据格式及产品编码等要求;
- (5) 交付流程: 规定不同工程阶段、不同工程类型勘测数字化产品的交付流程,明确产品校审、签署、保护、移交、验收等各流程中的技术要求;
- (6) 交付平台: 规定主流交付平台的勘测数字化产品交付要求,并约定新开发交付平台的主要技术指标及要求;
 - (7) 附录:对上述规定中具体的技术参数提出要求。

四、采用国际标准和国外先进标准的程度,以及与国际、国外、国内同类标准水平的对比情况

随着三维信息模型技术、三维协同设计、数字孪生等数字化手段的深度应用,水电行业 正经历从传统交付模式向全生命周期数字化交付的转型。现行标准体系存在分散化、碎片化 问题,亟需构建完整的数字化交付标准框架。

(1) 国内外标准体系现状

国际标准目前主要集中在建筑信息模型领域,为广义规范,相关理念与规定可为本规范的编写提供借鉴。国际标准化组织(ISO)发布的ISO 19650系列(建筑信息模型交付标准)、IEC 81346(工业系统结构化标准)等,为本规范提供了数据架构设计、模型分类编码等参考。例如ISO 19650-1提出的"信息容器"概念,与本规范中提到的勘测信息数据库具有理念一致性。

国内现行标准在国标、行标及地方标准及团标等在本专业细分领域有所涉及,但针对性不强。国标层面: GB/T 51301-2018《工程勘察设计信息模型交付标准》确立了基本交付原则,但未针对水电工程特殊性制定细则。行业标准: 石油化工行业制定了《石油化工工程数字化交付标准》(GB/T51296-2018)对石油化工工程的数字化产品交付进行了详细规定,但由于行业壁垒,相关规定对水电行业参考有限; 《水电工程施工地质规程》(NB T 35007-2013)等行业规范则聚焦水电工程施工阶段地质数据管理,二者在数字化交付格式、属性信息结构等方面存在空白。地方实践: 广州、深圳各地也相应出台了数字化设计产品的交付标准,如广州市《施工图三维数字化交付数据标准》、深圳市《建筑工程勘察信息模型交付标准》(SJG145-2023),这些地方标准一定程度上指导了相关行业的数字化交付工作,其技术要求可在一定程度上为水电行业提供参考。江苏省发布的《水利工程勘察设计数字化交付规范》(DB32/T 4955-2024),规定了水利行业勘察设计数据交付格式与流程,但其适用范围局限于区域水利工程,缺乏对复杂地质模型、跨阶段数据衔接的规范。

(2) 与在研标准的协同性分析

中国电建集团开展的《水利水电工程BIM标准体系研究》已形成设计阶段协同标准,但未覆盖勘测原始数据的数字化转化规则。本规范可填补该领域空白,明确测量、物探数据的结构化存储格式。

中国建筑业协会团体标准《建筑工程数字化交付技术标准》聚焦建筑工程领域,主要规定了建筑信息模型在不同阶段应达到的精度及功能要求,但总体对水电水利行业指导有限。本规范的制定可在水电水利工程领域进一步聚焦勘测成果的数字化交付。

(3) 社会组织团体标准关联性

广东省水利水电行业协会发布的《广东省水利水电工程地理信息数据交付标准》 (T/GDWHA 0005-2021)建立了"数据采集-制作-交付"全链条规则,但主要针对地理信息数据,而本规范需扩展至地质体模型、工程参数数据库等多元数据类型。

中国科技产业化促进会:已立项的《基于三维空间信息技术的工程数字化交付技术规范》强调空间数据融合,与本规范存在交叉领域。二者关系体现为:科技产业化标准侧重通用技术框架,而本规范专注水电工程特性需求。

本规范作为水电行业首个系统性数字化交付标准,通过与ISO 19650的国际接轨、对NB T 35007等行业标准的细化补充、与科技产业化促进会团标的协同互补,将有效解决当前勘测数据碎片化、交付物不统一等问题,为流域数字孪生、水电与抽蓄智能建造提供标准支撑。建议加快成立跨领域标准工作组,推动勘测-设计-施工全链条标准体系贯通。

五、本标准预期的经济效益和社会效益

本规范阐明的勘测设计产品交付流程与成果规范已在西北院多个抽水蓄能电站及水电站工程中得到了应用,取得了显著的经济效益和社会效益:

(1) 标准化交付体系的构建与应用

通过建立统一的三维地质模型与勘测信息数据库,实现了测绘、地质、物探、试验等多专业非结构化数据的统一规范交付,并在张掖抽水蓄能电站工程、皇城抽水蓄能电站工程、金川水电站工程等项目中实现了数字化交付。

(2) 数字化交付成果的拓展应用

通过统一且兼容的数字化成果交付,实现了设计、施工到运维管理的工程数据底座的构建,通过模型属性继承、格式转换(如IFC、glTF)及数字化交付平台,确保数据在工程各阶段的完整性和一致性,打造了张掖抽水蓄能电站、皇城抽水蓄能电站工程施工期智能建造平台的地质底座,助力施工建造的智能化与数字化。统一的地质数字化成果在金川水电站得到应用,形成了金川水电站地下厂房全空间地质预测预报模型,促进了金川电站厂房开挖的安全、高效开展。

国内年均水电工程投资规模超千亿元,数字化交付渗透率不足30%,标准化需求缺口显著。伴随"双碳"目标推进以及雅下水电开发,水电项目数字化交付市场规模可达50亿元/年。本规范预期效益可体现在以下两个方面:

①提质增效: 充分利用数据驱动优势,在水电行业持续实现全流程、全生命期的勘测数据高效利用,助力工程建设、运行维护的持续提质增效。

②科技兴安:推动基于地质信息的风险预测预判技术发展,提升工程地质风险预警能力,助力建设过程的本质安全化,以及运维过程中的区域协同应急抢险能力建设。

六、与有关的现行法律、法规和强制性国家标准的关系

本规范符合现有的法律、法规和强制性国家标准的规定。

七、标准重大分歧意见的处理经过和依据

本规范的制定过程中未出现重大的分歧意见。

八、标准性质的说明

本规范为中国科技产业化促进会发布的标准,属于团体标准,供会员和社会自愿使用。

九、贯标的措施和建议

建议按照国家有关团体标准管理规定和中国科技产业化促进会团体标准管理要求,在会员中推广采用本规范,鼓励社会各有关方面企业自愿采用该标准。

十、废止现行有关标准的建议

无。

十一、其他应予说明的事项

无。