
团 体 标 准

2024-05-20 发布 2024-05-21 实施

T/SUCA 024.1-2024

深圳市 8K 超高清视频产业协作联盟 发布

信息技术 面向机器智能的数据编码

第 1 部分：图像

Information technology—Data coding for machines—

Part 1: Image

ICS 35.040

CCS L 71

T/SUCA 024.1-2024

I

目  次

前言 .. Ⅲ

引言 .. Ⅳ

1 范围 .. 1

2 规范性引用文件 .. 1

3 术语和定义 .. 1

4 缩略语 .. 3

5 约定 .. 3

6 位流的语法和语义 ... 18

7 解析过程 ... 26

8 解码过程 ... 30

附录 A（规范性） 伪起始码方法 .. 44

附录 B（规范性） 档次 .. 45

附录 C（规范性） 神经网络模型参数 .. 47

附录 D（规范性） 解析过程中使用的数据以及码表 .. 48

附录 E（资料性） 特征适配 .. 56

T/SUCA 024.1-2024

III

前  言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分：标准化文件的结构和起草规则》的规定

起草。

本文件是T/SUCA 024《信息技术 面向机器智能的数据编码》的第1部分，T/SUCA 024《信息技

术 面向机器智能的数据编码》已经发布了以下部分：

——第1部分：图像。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由深圳市8K超高清视频产业协作联盟提出并归口。

本文件起草单位：浙江大学、中国科学技术大学、中国电子技术标准化研究院、中国电信股份有限

公司上海研究院、浙江大学宁波科创中心、宁波东方理工大学(暂名)、上海工程技术大学、深圳市 8K

超高清视频产业协作联盟、中国移动杭州研究院、中国科学院计算技术研究所、中国电信天翼视联科技

有限公司、杭州海康机器人股份有限公司、华为技术有限公司、南京大学、天津大学、咪咕文化科技有

限公司、中国移动通信有限公司研究院。

文件主要起草人：虞露、陈志波、范科峰、于化龙、李婧欣、张园、金鑫、董桂官、王慧芬、雷建

军、纪雯、罗传飞、赵海武、王莉、赵寅、马展、邱溥业、程宝平、雷珺、李琳、刘伟东、何淇淇、刘

澳、刘佳旺、冯若愚、高依欣、刘津铭、贾可、戚云鹏、李鑫、张畅、田港一、杨嘉欣。

T/SUCA 024.1-2024

Ⅳ

引  言

T/SUCA 024旨在确立面向机器智能的媒体压缩的方法，拟由3个部分构成。

——第 1部分：图像。目的在于确立面向机器智能的数据编码的图像压缩方法。

——第 2部分：点云。目的在于确立面向机器智能的数据编码的点云压缩方法。

——第 3部分：应用系统参考模型。目的在于确立面向机器智能的数据编码的应用系统参考模型。

T/SUCA 024.1-2024

1

面向机器智能的数据编码 第 1 部分：图像

1 范围

本文件规定了适应多种比特率、分辨率和质量要求的面向机器智能的图像压缩方法的解码过程。

本文件适用于安防监控、计算机视觉、无人驾驶、内容审核等面向机器智能相关应用的图像压缩。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中，注日期的引用文件，

仅该日期对应的版本适用于本文件；不注日期的引用文件，其最新版本（包括所有的修改单）适用于本

文件。

GB/T 33475.2—2016 信息技术 高效多媒体编码 第2部分：视频

3 术语和定义

GB/T 33475.2—2016界定的以及下列术语和定义适用于本文件。

3.1

残差 residual
张量元素的重建值与其预测值（3.9）的差值。

3.2

反量化 dequantization
对被量化过的数据进行变换得到浮点数的过程。

3.3

档次 profile
T/SUCA 024中语法、语义及算法的子集。

[来源:GB/T 33475.2—2016，3.8，有修改]

3.4

图像 image
一帧组成的纹理信息的集合。

3.5

位串 bit string
由有限个二进制位组成的有序序列。

注：其最左边位是最高有效位（MSB），最右边位是最低有效位（LSB）。

[来源:GB/T 33475.2—2016，3.55，有修改]

3.6

位流 bitstream
编码图像所形成的二进制数据流。

[来源:GB/T 33475.2—2016，3.56]

3.7

预测 prediction

T/SUCA 024.1-2024

2

根据先前已解码的张量元素（3.14）估计待解码的张量元素（3.14）的具体实现。

3.8

预测补偿 prediction compensation
对语法元素解码所得张量元素（3.14）的残差（3.1）和其对应预测值（3.9）进行求和的过程。

3.9

预测值 prediction value
在张量元素（3.14）的解码过程中，用到的先前已解码的张量元素（3.14）的组合。

3.10

语法元素 syntax element
位流中的数据单元解析后的结果。

3.11

字节 byte
8位的位串（3.5）。

[来源:GB/T 33475.2—2016，3.79]

3.12

字节对齐 byte alignment
将字节（3.11）按照一定规则排列的方式。

注：从位流（3.6）的第一个二进制位开始，某二进制位的位置是 8的整数倍。

[来源:GB/T 33475.2—2016，3.80，有修改]

3.13

特征 feature
包含通道、宽度和高度等信息的三维张量数据。

3.14

张量元素 tensor element
张量中给定通道、行和列等位置上的数据。

3.15

左上角 left-upper corner
张量中第0行第0列的空间位置。

3.16

右下角 right-bottom corner
张量中最后一行最后一列的空间位置。

3.17

超先验 hyper prior
对低分辨率图像张量数据的先验信息。

3.18

特征张量 feature tensor
图像（3.4）经过降采样得到的张量。

3.19

卷积核 convolution kernel
一个包括通道、宽和高等三维的权重张量数据。

注：用于和输入的张量进行卷积得到输出的张量中的一个通道的所有张量元素。

T/SUCA 024.1-2024

3

4 缩略语

下列缩略语适用于本文件。

CNN：卷积神经网络（Convolutional Neural Network）
CDF：累积分布函数（Cumulative Distribution Function）
FPN：特征金字塔网络（Feature Pyramid Network）
LSB：最低有效位（Least Significant Bit）
MSB：最高有效位（Most Significant Bit）

5 约定

5.1 通则

本章定义了本文件中使用的数学运算符及其优先级。在本文件中，当不使用括号改变运算符之间的

优先级时，默认按照如下方式进行计算：

——优先级高的运算符先于优先级低的运算符进行计算，运算符的优先级的值越小表示该运算符的

优先级越高；

——优先级相同的运算符按照从左到右的顺序依次计算。

除特别说明外，约定编号和计数从0开始。

5.2 算术运算符

算术运算符定义见表1。

表 1 算术运算符定义

算术运算符 优先级 定义

+ 5 加法运算

- 5 减法运算（二元运算符）或取反（一元前缀运算符）

* 4 乘法运算

ab 3 幂运算，表示a的b次幂。也可表示上标

/ 4 整除运算，沿向0的取值方向截断。例如，7/4和-7/-4截断至1，-7/4和7/-4截断至-1

÷ 4 除法运算，不做截断或四舍五入

�
� 4 除法运算，不做截断或四舍五入

�=�

�

� �� 5 自变量i取由a到b（含b）的所有整数值时，函数� � 的累加和

a% b 4 模运算，a除以b的余数，其中a与b都是正整数

4 向上取整

5.3 逻辑运算符

逻辑运算符定义见表2。

T/SUCA 024.1-2024

4

表 2 逻辑运算符定义

逻辑运算符 优先级 定义

! 2 逻辑非运算

express ? a : b 11 如果表达式express的结果为真或不为0，则使用a进行赋值；否则，使用b进行赋值

5.4 关系运算符

关系运算符定义见表3。

表 3 关系运算符定义

关系运算符 优先级 定义

> 7 大于

>= 7 大于或等于

< 7 小于

<= 7 小于或等于

== 8 等于

!= 8 不等于

5.5 位运算符

位运算符定义见表4。

表 4 位运算符定义

位运算符 优先级 定义

& 9 与运算

| 10 或运算

~ 2 取反运算

a >> b 6 将a以2的补码整数表示的形式向右移b位。仅当b取正数时定义此运算

a << b 6 将a以2的补码整数表示的形式向左移b位。仅当b取正数时定义此运算

5.6 赋值

赋值运算定义见表5。

表 5 赋值运算定义

赋值运算 优先级 定义

= 12 赋值运算符

++ 1 递增，x++相当于x = x + 1。当用于数组下标时，在自加运算前先求变量值

-- 1 递减，x--相当于x = x – 1。当用于数组下标时，在自减运算前先求变量值

+= 12 自加指定值，例如x += 3相当于x = x + 3，x += (-3)相当于x = x + (-3)

-= 12 自减指定值，例如x -= 3相当于x = x - 3，x -= (-3)相当于x = x - (-3)

T/SUCA 024.1-2024

5

5.7 数学函数

数学函数定义见公式（1）和公式（2）。

Ceil()x x    .. (1)

式中：

x——自变量x。

;
Clip3(, ,) ;

;

i x i
i j x j x j

x


 

 其他

...(2)

式中：

x——自变量x；
i——下界；

j——上界。

5.8 结构关系符

结构关系符定义见表6。

表 6 结构关系符

结构关系符 定义

-> 例如：a->b表示a是一个结构，b是a的一个成员变量

5.9 位流语法、解析过程和解码过程的描述方法

5.9.1 描述方法

位流的语法元素使用粗体字表示，每个语法元素通过名字（用下划线分割的英文字母组，所有字母

都是小写）、语法和语义来描述。语法表和正文中语法元素的值用常规字体表示。

某些情况下，可在语法表中应用从语法元素导出的其他变量值，这样的变量在语法表或正文中用不

带下划线的小写字母和大写字母混合命名。

语法元素值的助记符和变量值的助记符与它们的值之间的关系在正文中说明。在某些情况下，二者

等同使用。助记符由一个或多个使用下划线分隔的字母组表示，每个字母组以大写字母开始，也可包括

多个大写字母。

函数的参数使用下划线分割的英文字母组表示，所有字母都是小写。

条件语句中0表示FALSE，非0表示TRUE。
语法表描述了所有符合本文件的位流语法的超集，附加的语法限制在相关条中说明。

表7给出了描述语法的伪代码例子。当语法元素出现时，表示从位流中读一个数据单元。

表 7 语法描述的伪代码

伪代码 描述符

/*语句是一个语法元素的描述符，或者说明语法元素的存在、类型和数值，下

面给出两个例子。*/

T/SUCA 024.1-2024

6

伪代码 描述符

syntax_element ne(v)

conditioning statement

/*花括号括起来的语句组是复合语句，在功能上视作单个语句。*/

{

statement

…

}

/*“while”语句测试condition是否为TRUE，如果为TRUE，则重复执行循环体，

直到condition不为TRUE。*/

while (condition)

statement

/*“do … while”语句先执行循环体一次，然后测试condition是否为TRUE，

如果为TRUE，则重复执行循环体，直到condition不为TRUE。*/

do

statement

while (condition)

/*“if … else”语句首先测试condition，如果为TRUE，则执行primary语句，否

则执行alternative语句。如果alternative语句不需要执行，结构的“else”部分和

相关的alternative语句可忽略。*/

if (condition)

primary statement

else

alternative statement

/*“for”语句首先执行initial语句，然后测试condition，如果conditon为TRUE，

则重复执行primary语句和subsequent语句直到condition不为TRUE。*/

for (initial statement; condition; subsequent statement)

primary statement

/*“break”语句用于do-while、while和for循环体中，可使当前循环体立即终止

循环。*/

break

解析过程和解码过程用文字和与语法描述相同的伪代码描述。

表 7 语法描述的伪代码（续）

T/SUCA 024.1-2024

7

5.9.2 函数

5.9.2.1 概述

以下函数用于语法描述。假定解码器中存在一个位流指针，这个指针指向位流中要读取的下一个二

进制位的位置。函数由函数名及左右圆括号内的参数构成。函数也可没有参数。

5.9.2.2 byte_aligned()

如果位流的当前位置是字节对齐的，返回TRUE，否则返回FALSE。

5.9.2.3 next_bits(n)

返回位流的随后n个二进制位，MSB在前，不改变位流指针。如果剩余的二进制位少于n，则返回0。

5.9.2.4 read_bits(n)

返回位流的随后n个二进制位，MSB在前，同时位流指针前移n个二进制位。如果n等于0，则返回0，

位流指针不前移。

函数也用于解析过程和解码过程的描述。

5.9.3 描述符

描述符表示不同语法元素的解析过程（见表8）。

表 8 描述符

描述符 说明

u(n) n位无符号整数。在语法表中，如果n是“v”，其位数由其他语法元素值确定。解析过程在7.2中定义

f(n) 取特定值的连续n个二进制位。解析过程在7.3中定义

ne(v) 有符号整数语法元素。解析过程使用基于神经网络的概率估计和数值熵解析，在7.4中定义

le(v) 无符号整数语法元素。解析过程使用码表解析，在7.5中定义

5.9.4 保留、禁止和标记位

本文件定义的位流语法中，某些语法元素的值被标注为“保留”（reserved）或“禁止”（forbidden）。
“保留”定义了一些特定语法元素值用于将来对本文件的扩展。这些值不应出现在符合本文件的位

流中。

“禁止”定义了一些特定语法元素值，这些值不应出现在符合本文件的位流中。

注：禁止某些值的目的通常是为了避免在位流中出现伪起始码。

“标记位”（marker_bit）指该位的值应为‘1’。

位流中的“保留位”（reserved_bits）表明保留了一些语法单元用于将来对本文件的扩展，解码处

理应忽略这些位。“保留位”不应出现从任意字节对齐位置开始的21个以上连续的‘0’。

5.10 数据形式

5.10.1 张量和张量中的元素

张量拥有至少三个维度，以下以拥有三个维度的张量举例说明其描述方法，拥有四个维度或更多维

度的张量的描述方法依此类推。

T/SUCA 024.1-2024

8

T[:c][:h][:w]代表一个通道数为c、高度为h和宽度为w的张量，其中c、h、w均为正数。当不需要

强调张量的各个维度的大小时，T[:c][:h][:w]可以简写为T。
对于张量T，T[i][j][k]代表一个由i、j、k索引确定的张量元素，表示张量T中第i个通道第j行第k

列的张量元素。

对于张量T，T[:c][j1:j2][:w]代表第2个维度从j1索引到(j2-1)索引确定的所有元素，其中j1为小于

h的非负整数，j2为不大于h且大于j1的非负整数。当j1不出现时，默认j1=0，当j2不出现时，默认j2为h。
依次类推，其他维度上由给定索引确定的所有元素的表示方法为T[i1:i2][:h][:w]、T[:c][:h][k1:k2]、
T[i1:i2][j1:j2][:w]、T[i1:i2][:h][k1:k2]、T[:c][j1:j2][k1:k2]。

5.10.2 矩阵和矩阵中的元素

M[:h][:w]代表一个高度为h和宽度为w的矩阵，其中h、w均为正数。当不需要强调张量的各个维

度的大小时，M[:h][:w]可以简写为M。

对于矩阵M，M[j][k]代表一个由j、k索引确定的矩阵元素，表示矩阵M中第j行第k列的矩阵元素。

对于矩阵M，M[j][:w]代表第1个维度由j索引确定的所有元素。依次类推，其他维度上由给定索

引确定的所有元素的表示方法为M[:h][k]。
对于矩阵M，M[j1:j2][:w]代表第1个维度从j1索引到(j2-1)索引确定的所有元素，其中j1为小于h

的非负整数，j2为不大于h且大于j1的非负整数。当j1不出现时，默认j1的值为0，当j2不出现时，默认j2
的值为h。依次类推，其他维度上由给定索引确定的所有元素的表示方法为M[:h][k1:k2]。

5.10.3 列表和列表中的元素

列表L[:a]代表一个长度为a的列表，其中a为正数。当不需要强调张量的各个维度的大小时，L[:a]
可以简写为L。

对于列表L，L[i]代表其中第i个列表元素。

对于列表L，L[i1:i2]代表从i1索引到(i2-1)索引确定的所有元素，其中i1为小于a的非负整数，i2为
不大于a且大于i1的非负整数。当i1不出现时，默认i1=0。

5.11 二维卷积

二维卷积表示为Conv(c_in, c_out, s, k_ver, k_hor)(input, weight, bias)，其中：

——c_in表示输入张量的通道数；

——c_out表示输出张量的通道数；

——s表示卷积步长；

——k_ver和 k_hor表示卷积核的高和宽。

Conv的输入包括：

——输入张量 input[:c_in][:h_in][:w_in]；
——卷积核权重 weight[:c_out][:c_in][:k_ver][:k_hor]；
——偏置 bias[:c_out]，偏置的缺省值为 0。
Conv的结果为：张量result[:c_out][:h_out][:w_out]，其中：

——h_out = Ceil(h_in÷ s)；
——w_out = Ceil(h_in÷ s)。
解析和解码过程加载了神经网络的整套模型参数。Conv的weight和bias是该整套模型参数中的一部

分参数，在解析和解码过程中不再变化。此时Conv简略表示为Conv(c_in, c_out, s, k_ver, k_hor)(input)。

T/SUCA 024.1-2024

9

当在一系列操作中调用本条中定义的Conv且未明确设置输入张量的情况下，默认将输入张量设置

为 该 系 列 操 作 中 当 前 操 作 的 前 一 个 操 作 的 输 出 张 量 ， 此 时 Conv 简 略 表 示 为

Conv(c_in, c_out, s, k_ver, k_hor)。
Conv执行以下计算操作：

Conv(c_in, c_out, s, k_ver, k_hor)(input, weight, bias) {

for (i = 0; i < c_out; i++) {

for (j = 0; j < h_out; j++) {

for (k = 0; k < w_out; k++) {

output[i][j][k] = 0

for (x = 0; x < c_in; x++) {

for (y = 0; y < k_ver; y++) {

for (z = 0; z < k_hor; z++) {

j1 = (j * s) - (k_ver - 1) / 2 + y

k1 = (k * s) -(k_hor - 1) / 2 + z

temp = (j1 < 0 || j1 >= h_in || k1 < 0 || k1 >= w_in) ? 0 : input[x][j1][k1]

output[i][j][k] += weight[i][x][y][z] * temp

}

}

}

output[i][j][k] += bias[i]

}

}

}

}

5.12 超分重组

超分重组表示为Shuffle(s_vh)(input)，其中，参数包括：s_vh表示高度和宽度的放大倍数。

Shuffle的输入为：输入张量input[:c_in][:h_in][:w_in]，且c_in应是s_vh * s_vh的整数倍。

Shuffle的结果为：张量output[:c_out][:h_out][:w_out]，其中：

——h_out = s_vh * h_in；
——w_out = s_vh * w_in；
——c_out = c_in / (s_vh * s_vh)。
当在一系列操作中调用本条中定义的Shuffle且未明确设置输入张量的情况下，默认将输入张量设置

为该系列操作中当前操作的前一个操作的输出张量，此时Shuffle简略表示为Shuffle(s_vh)。
Shuffle执行以下计算操作：

Shuffle(s_vh)(input) {

for (i = 0; i < c_out; i++)

for (j = 0; j < h_out; j++)

for (k = 0; k < w_out; k++)

output[i][j][k] = input[i * s_vh * s_vh + (j % s_vh) * s_vh + (k % s_vh)][j / s_vh][k / s_vh]

}

T/SUCA 024.1-2024

10

5.13 交叉超分重组

交叉超分重组表示为CrossUpShuffle(input)。
CrossUpShuffle的输入为：输入张量input[:c_in][:h_in][:w_in]，其中c_in应是4的整数倍。

CrossUpShuffle的结果为：张量output[:c_out][:h_out][:w_out]，其中：

——h_out = 2 * h_in；
——w_out = 2 * w_in；
——c_out = c_in / 4。
当在一系列操作中调用本条中定义的CrossUpShuffle且未明确设置输入张量的情况下，默认将输入

张量设置为该系列操作中当前操作的前一个操作的输出张量，此时CrossUpShuffle简略表示为

CrossUpShuffle()。
CrossUpShuffle执行以下计算操作：

CrossUpShuffle(input) {

for (i = 0; i < c_out; i++) {

for (j = 0; j < h_in; j++) {

for (k = 0; k < w_in; k++) {

output[i][j * 2][k * 2] = input[i * 4][j][k]

output[i][j * 2][k * 2 + 1] = input[i * 4 + 2][j][k]

output[i][j * 2 + 1][k * 2] = input[i * 4 + 3][j][k]

output[i][j * 2 + 1][k * 2 + 1] = input[i * 4 + 1][j][k]

}

}

}

}

5.14 交叉降分重组

降分重组表示为CrossDownShuffle(input)。
CrossDownShuffle的输入为：输入张量input[:c_in][:h_in][:w_in]，其中h_in和w_in均应是2的整数

倍。

CrossDownShuffle的结果为：张量output[:c_out][:h_out][:w_out]，其中：

——h_out = h_in / 2；
——w_out = w_in / 2；
——c_out = c_in * 4。
当在一系列操作中调用本条中定义的CrossDownShuffle且未明确设置输入张量的情况下，默认将输

入张量设置为该系列操作中当前操作的前一个操作的输出张量，此时CrossDownShuffle简略表示为

CrossDownShuffle()。
CrossDownShuffle执行以下计算操作：

CrossDownShuffle(input) {

for (i = 0; i < c_in; i++) {

for (j = 0; j < h_out; j++) {

for (k = 0; k < w_out; k++) {

output[i * 4][j][k] = input[i][j * 2][k * 2]

T/SUCA 024.1-2024

11

output[i * 4 + 1][j][k] = input[i][j * 2 + 1][k * 2 + 1]

output[i * 4 + 2][j][k] = input[i][j * 2][k * 2 + 1]

output[i * 4 + 3][j][k] = input[i][j * 2 + 1][k * 2]

}

}

}

}

5.15 张量拼接

张量拼接表示为Concat(input1, input2)。
该过程的输入是两个宽度和高度大小相同的张量input1(c1, h, w)和input2(c2, h, w)。
该过程的结果是张量output(c1 + c2, h, w)。
Concat执行以下计算操作：

for (i = 0; i < c1+c2; i++)

for (j = 0; j < h; j++)

for (k = 0; k < w; k++)

output[i][j][k] = (i < c1) ? input1[i][j][k] : input2[i][j][k]

5.16 渗漏激活函数

渗漏激活函数表示为LeakyReLU(input)。
LeakyReLU的输入为：输入张量input[:c][:h][:w]。
LeakyReLU的结果为：张量output[:c][:h][:w]。
当在一系列操作中调用本条中定义的LeakyReLU且未明确设置输入张量的情况下，默认将输入张量

设置为该系列操作中当前操作的前一个操作的输出张量，此时LeakyReLU简略表示为LeakyReLU()。
LeakyReLU执行以下计算操作：

LeakyReLU(input) {

negative_slop = 0.01

for (i = 0; i < c_in; i++) {

for (j = 0; j < h_out; j++) {

for (k = 0; k < w_out; k++) {

if(input[i][j][k] >= 0)

output[i][j][k] = input[i][j][k]

else

output[i][j][k] = negative_slop * input[i][j][k]

}

}

}

}

T/SUCA 024.1-2024

12

5.17 标准激活函数

标准激活函数表示为ReLU(input)。
ReLU的输入为：输入张量input[:c][:h][:w]。
ReLU的结果为：张量output[:c][:h][:w]。
当在一系列操作中调用本条中定义的ReLU且未明确设置输入张量的情况下，默认将输入张量设置

为该系列操作中当前操作的前一个操作的输出张量，此时ReLU简略表示为ReLU()。
ReLU执行以下计算操作：

ReLU(input) {

for (i = 0; i < c_in; i++) {

for (j = 0; j < h_out; j++) {

for (k = 0; k < w_out; k++) {

if(input[i][j][k] >= 0)

output[i][j][k] = input[i][j][k]

else

output[i][j][k] = 0

}

}

}

}

5.18 二维深度卷积

二维深度卷积表示为 DepthConv(c, s, k_ver, k_hor)(input, weight, bias)，其中：

——c表示输入张量和输出张量的通道数；

——s表示卷积步长；

——k_ver和 k_hor表示卷积核的高和宽。

DepthConv的输入包括：

——输入张量 input[:c][:h_in][:w_in]；
——卷积核权重 weight[:c][:k_ver][:k_hor]；
——偏置 bias[:c]，偏置的缺省值为 0。
DepthConv的结果为：张量output[:c][:h_out][:w_out]，其中：

——h_out = Ceil(h_in÷ s)；
——w_out = Ceil(h_in÷ s)。
解析和解码过程加载了神经网络的整套模型参数。DepthConv的weight和bias是该整套模型参数中的

一 部 分 参 数 ， 在 解 析 和 解 码 过 程 中 不 再 变 化 。 此 时 DepthConv 简 略 表 示 为

DepthConv(c, s, k_ver, k_hor)(input)。
当在一系列操作中调用本条中定义的DepthConv且未明确设置输入张量的情况下，默认将输入张量

设 置 为 该 系 列 操 作 中 当 前 操 作 的 前 一 个 操 作 的 输 出 张 量 ， 此 时 DepthConv简 略 表 示 为

DepthConv(c, s, k_ver, k_hor)。
DepthConv执行以下计算操作：

DepthConv(c, s, k_ver, k_hor)(input, weight, bias) {

for (x = 0; x < c; x++) {

T/SUCA 024.1-2024

13

5.19 二维整数卷积

二维整数卷积表示为IntConv(c_in, c_out, s, k_ver, k_hor)(input, weight, bias, max, shift)，其中：

——c_in表示输入整数张量的通道数；

——c_out表示输出整数张量的通道数；

——s表示卷积步长；

——k_ver和 k_hor表示整数卷积核的高和宽。

IntConv的输入包括：

——输入整数张量 input[:c_in][:h_in][:w_in]；
——整数卷积核权重 weight[:c_out][:c_in][:k_ver][:k_hor]；
——整数偏置 bias[:c_out]，偏置的缺省值为 0；
——输入整数张量的截断值 max；
——输出整数张量的右移位数 shift[:c_out]。
IntConv的结果为：整数张量output[:c_out][:h_out][:w_out]，其中：

——h_out = Ceil(h_in÷ s)；
——w_out = Ceil(h_in÷ s)。
解析和解码过程加载了神经网络的整套模型参数。IntConv的weight、bias、max和shift是该整套模

型 参 数 中 的 一 部 分 参 数 ， 在 解 析 和 解 码 过 程 中 不 再 变 化 。 此 时 IntConv 简 略 表 示 为

IntConv(c_in, c_out, s, k_ver, k_hor)(input)。
当在一系列操作中调用本条中定义的IntConv且未明确设置输入张量的情况下，默认将输入张量设

置为该系列操作中当前操作的前一个操作的输出张量，此时 IntConv简略表示为 IntConv
(c_in, c_out, s, k_ver, k_hor)。

IntConv执行以下计算操作：

a) 对 input进行截断操作：

for (i = 0; i < c_in; i++)

for (j = 0; j < h_in; j++)

for (j = 0; j < h_out; j++) {

for (k = 0; k < w_out; k++) {

output[x][j][k] = 0

for (y = 0; y < k_ver; y++) {

for (z = 0; z < k_hor; z++) {

j1 = (j * s) - (k_ver - 1) / 2 + y

k1 = (k * s) - (k_hor - 1) / 2 + z

temp = (j1 < 0 || j1 >= h_in || k1 < 0 || k1 >= w_in) ? 0 : input[x][j1][k1]

output[x][j][k] += weight[x][y][z] * temp

}

}

output[x][j][k] += bias[x]

}

}
}

}

T/SUCA 024.1-2024

14

for (k = 0; k < w_in; k++)

clipped_input[i][j][k] = Clip3(-max, max – 1, input[i][j][k])

b) 进行二维卷积操作：

temp[:c_out][:h_out][:w_out] =
Conv(c_in, c_out, s, k_ver, k_hor)(clipped_input[:c_in][:h_in][w_in], weight, bias)

c) 对 temp进行右移位操作：

for (i = 0; i < c_out; i++)

for (j = 0; j < h_out; j++)

for (k = 0; k < w_out; k++)

output[i][j][k] = temp[i][j][k] >> shift[i]

5.20 二维转置卷积

二维转置卷积表示为Tconv(c_in, c_out, s_vh, k_ver, k_hor)(input, weight, bias)，其中：

——c_in表示输入张量的通道数；

——c_out表示输出张量的通道数；

——s_vh 表示 c_out的高和宽相较于 c_in的高和宽的放大倍数；

——k_ver和 k_hor表示卷积核的高和宽。

Tconv的输入包括：

——输入张量 input[:c_in][:h_in][:w_in]；
——卷积核权重 weight[:c_out][:c_in][:k_ver][:k_hor]；
——偏置 bias[:c_out]，偏置的缺省值为 0。
Tconv的结果为：张量output[:c_out][:h_out][:w_out]张量，其中：

——h_out = s_vh * h_in；
——w_out = s_vh * w_in。
解析和解码过程加载了神经网络的整套模型参数。Tconv的weight和bias是该整套模型参数中的一部

分参数，在解析和解码过程中不再变化。此时Tconv简略表示为Tconv(c_in, c_out, s, k_ver, k_hor)(input)。
当在一系列操作中调用本条中定义的Tconv且未明确设置输入张量的情况下，默认将输入张量设置

为 该 系 列 操 作 中 当 前 操 作 的 前 一 个 操 作 的 输 出 张 量 ， 此 时 Tconv 简 略 表 示 为

Tconv(c_in, c_out, s_vh, k_ver, k_hor)。
Tconv执行以下计算操作：

Tconv(c_in, c_out, s_vh, k_ver, k_hor)(input, weight, bias) {

for (i = 0; i < c_in; i++)

for (j = 0; j < h_in; j++)

for (k = 0; k < w_in; k++)

temp[i][j * s_vh][k * s_vh] = input[i][j][k]

output[:c_out][:h_out][:w_out] =
Conv(c_in, c_out, 1, k_ver, k_hor)(temp[:c_in][:h_out][:w_out], weight, bias)

}

5.21 张量填充

张量填充表示为Pad(up, bottom, left, right, front, back)(input)，其中：

T/SUCA 024.1-2024

15

——up表示在张量的宽高平面上向上方填充张量样本的数量；

——bottom表示在张量的宽高平面上向下方填充张量样本的数量；

——left表示在张量的宽高平面上向左侧填充张量样本的数量；

——right表示在张量的宽高平面上向右侧填充张量样本的数量；

——front表示在张量的通道维度上向前填充张量样本的数量；

——back表示在张量的通道维度上向后填充张量样本的数量。

Pad的输入包括：输入张量input[:c_in][:h_in][:w_in]；
Pad的结果为：张量output[:c_out][:h_out][:w_out]，其中：

——c_out = c_in + front + back；
——h_out = h_in + up + bottom；

——w_out = w_in + left + right。
默认的填充的值为0。
当在一系列操作中调用本条中定义的Pad且未明确设置输入张量的情况下，默认将输入张量设置为

该 系 列 操 作 中 当 前 操 作 的 前 一 个 操 作 的 输 出 张 量 ， 此 时 Pad 简 略 表 示 为

Pad(up, bottom, left, right, front, back)。
当不指定front和back时，两者的缺省值为0，此时Pad简略表示为Pad(up, bottom, left, right)。
Pad执行如下操作：

Pad(up, bottom, left, right, front, back)(input) {

for (i = 0; i < c_out; i++)

for (j = 0; j < h_out; j++)

for (k = 0; k < w_out; k++)

if (i >= front & i < (c_out – back) & j >= left & j < (h_out – right) & k >= up & k < (w_out –
bottom))

output[i][j][k] = input[i – front][j – up][k – left]

else

output[i][j][k] = 0

}

5.22 张量裁剪

张量裁剪表示为Crop(h_out, w_out)(input)，其中：

——h_out表示在裁剪后的张量的高度；

——w_out表示在裁剪后的张量的宽度。

Crop的输入包括：输入张量input[:c][:h_in][:w_in]。
Crop的结果为：张量output[:c][:h_out][:w_out]。
h_out应小于或等于h_in，w_out应小于或等于w_in。
当在一系列操作中调用本条中定义的Crop且未明确设置输入张量的情况下，默认将输入张量设置为

该系列操作中当前操作的前一个操作的输出张量，此时Crop简略表示为Crop(h_out, w_out)。
Crop执行如下操作：

Crop(h_out, w_out)(input) {

for (i = 0; i < c; i++)

for (j = 0; j < h_out; j++)

for (k = 0; k < w_out; k++)

T/SUCA 024.1-2024

16

output[i][j][k] = input[i][j][k]

}

5.23 张量取绝对值

张量取绝对值表示为ABS(input)。
ABS的输入包括：输入张量input[:c][:h][:w]。
ABS的结果为：张量output[:c][:h][:w]。
当在一系列操作中调用本条中定义的ABS且未明确设置输入张量的情况下，默认将输入张量设置为

该系列操作中当前操作的前一个操作的输出张量，此时ABS简略表示为ABS()。
ABS执行如下操作：

ABS(input) {

for (i = 0; i < c; i++)

for (j = 0; j < h; j++)

for (k = 0; k < w; k++)

output[i][j][k] = (input[i][j][k] < 0) ? -input[i][j][k] : input[i][j][k]

}

5.24 张量截断

张量截断表示为Clip(low_thr, high_thr)(input)，其中：

——low_thr表示张量中元素值被截断的下限值；

——high_thr表示张量中元素值被截断的上限值。

Clip的输入包括：输入张量input[:c][:h][:w]。
Clip的结果为：张量output[:c][:h][:w]。
当在一系列操作中调用本条中定义的Clip且未明确设置输入张量的情况下，默认将输入张量设置为

该系列操作中当前操作的前一个操作的输出张量，此时Clip简略表示为Clip(low_thr, high_thr)。
Clip执行如下操作：

Clip(low_thr, high_thr)(input) {

for (i = 0; i < c; i++)

for (j = 0; j < h; j++)

for (k = 0; k < w; k++)

output[i][j][k] = clip3(low_thr, high_thr, input[i][j][k])

}

5.25 张量加和

张量加和表示为Add(input1, input2)。
Add的输入包括：

——输入张量 input1[:c][:h][:w]；
——输入张量 input2[:c][:h][:w]。
Add的结果为：张量output[:c][:h][:w]。
Add执行如下操作：

T/SUCA 024.1-2024

17

Add(input1,input2) {

for (i = 0; i < c; i++)

for (j = 0; j < h; j++)

for (k = 0; k < w; k++)

output[i][j][k] = input1[i][j][k] + input2[i][j][k]

}

5.26 二维加权卷积

二维加权卷积表示为MaskConv(c)(input, weight1, weight2, bias1, bias2)，其中：c表示张量的通道

数。

MaskConv的输入包括：

——输入张量 input[:c][:h][:w]；
——卷积核权重 weight1[:c][:c][:3][:3]、weight2[:c][:c][:1][:1]；
——偏置 bias1[c]、bias2[c]，偏置的缺省值为 0。
MaskConv的结果为：张量output[:c][:h][:w]。
解析和解码过程加载了神经网络的整套模型参数。MaskConv的weight和bias是该整套模型参数中的

一部分参数，在解析和解码过程中不再变化。此时MaskConv简略表示为MaskConv(c)(input)。
当在一系列操作中调用本条中定义的MaskConv且未明确设置输入张量的情况下，默认将输入张量

设置为该系列操作中当前操作的前一个操作的输出张量，此时MaskConv简略表示为MaskConv(c)。
MaskConv依次执行以下步骤：

a) 使用渗漏激活函数：

tmp1[:c][:h][:w] = LeakyReLU(input[:c][:h][:w])

b) 进行二维深度卷积：

tmp2[:c][:h][:w] = DepthConv(c, 1, 3, 3)(tmp1[:c][:h][:w], weight1[:c][:c][:3][:3], bias1[c])

c) 进行二维卷积：

tmp3[:c][:h][:w] = Conv(c, c, 1, 1, 1)(tmp2[:c][:h][:w], weight2[:c][:c][:1][:1], bias2[c])

d) 进行以下操作：

for (i = 0; i < c; i++)

for (j = 0; j < h; j++)

for (k = 0; k < w; k++)

output[i][j][k] = input[i][j][k] * (1 + tmp3[i][j][k])

5.27 二维残差卷积

二维残差卷积表示为ResConv(c_in, c_out, tp)(input, weight1, weight2, weight3, bias1, bias2, bias3)，
其中：

——c_in表示输入张量的通道数；

——c_out表示输出张量的通道数；

——tp表示 ResConv的类型，其值为 0或 1。
ResConv的输入包括：

——输入张量 input[:c_in][:h][:w]；

T/SUCA 024.1-2024

18

——卷积核权重 weight1[:c_in][:3][:3]、weight2[:c_out][:c_in][:1][:1]、
weight3[:c_out][:c_in][:1][:1]；

——偏置 bias1[c_in]、bias2[c_out]、bias3[c_out]，偏置的缺省值为 0。
ResConv的结果为：张量output[:c_out][:h][:w]。
解析和解码过程加载了神经网络的整套模型参数。ResConv的weight1、weight2和weight3以及bias1、

bias2和bias3是该整套模型参数中的一部分参数，在解析和解码过程中不再变化。此时ResConv简略表示

为ResConv(c_in, c_out, s, k_ver, k_hor)(input)。
当在一系列操作中调用本条中定义的ResConv且未明确设置输入张量的情况下，默认将输入张量设

置 为 该 系 列 操 作 中 当 前 操 作 的 前 一 个 操 作 的 输 出 张 量 ， 此 时 ResConv 简 略 表 示 为

ResConv(c_in, c_out, s, k_ver, k_hor)。
ResConv依次执行以下步骤：

a) 如果 tp的值为 1，使用渗漏激活函数：

tmp0[:c_in][:h][:w] = LeakyReLU(input[:c_in][:h][:w])

b) 如果 tp的值为 0，令 tmp0=input；
c) 进行二维深度卷积：

tmp1[:c_in][:h][:w] =
DepthConv(c_in, 1, 3, 3)(tmp0[:c_in][:h][:w], weight1[:c_in][:3][:3], bias1[c_in])

d) 进行二维卷积：

tmp2[:c_out][:h][:w] =
Conv(c_in, c_out, 1, 1, 1)(tmp1[:c_in][:h][:w], weight2[:c_out][:c_in][:1][:1], bias2[c_out])

e) 如果 tp的值为 1，令 tmp3=tmp2；
f) 如果 tp的值为 0，使用渗漏激活函数：

tmp3[:c_out][:h][:w] = LeakyReLU(tmp2[:c_out][:h][:w])

g) 进行以下操作：

if(c_in == c_out)

tmp4[:c_out][:h][:w] = input[:c_in][:h][:w]

else

tmp4[:c_out][:h][:w] =
Conv(c_in, c_out, 1, 1, 1)(input[:c_in][:h][:w], weight3[:c_out][:c_in][:1][:1], bias3[c_out])

h) 进行张量加和：

output[:c_out][:h][:w] = Add(tmp4[:c_out][:h][:w], tmp3[:c_out][:h][:w])

6 位流的语法和语义

6.1 语法描述

6.1.1 起始码

起始码是一组特定的位串。在符合本文件的位流中，除起始码外的任何情况下都不应出现这些位串。

起始码由起始码前缀和起始码值构成。起始码前缀是位串‘0000 0000 0000 0000 0000 0001’。

所有的起始码都应字节对齐。

起始码值是一个8位整数，用来表示起始码的类型（见表9）。

表 9 起始码值

T/SUCA 024.1-2024

19

起始码类型 起始码值（十六进制）

图像头起始码（icm_header_start_code） 80

保留 其他

部分语法元素取特定值时可得到与起始码前缀相同的位串，称为伪起始码。符合本文件的编码器和

解码器应按照附录A定义的方法处理伪起始码问题。

6.1.2 图像位流定义

图像位流定义见表10。

表 10 图像位流定义

图像位流定义 描述符

icm_bitstream() {

image_header()

if (image_structure_enabled_flag)

image_structure_data()

image_feature_data()

if (image_rec_enabled_flag)

image_rec_data()

}

6.1.3 图像头定义

图像头定义见表11。

表 11 图像头定义

图像头定义 描述符

image_header() {

icm_header_start_code f(32)

profile_id u(4)

z_width_minus1 u(8)

z_height_minus1 u(8)

marker_bit

feature_type_id u(8)

image_structure_enabled_flag u(1)

image_rec_enabled_flag u(1)

marker_bit

if (image_structure_enabled_flag) {

表 11 图像头定义（续）

T/SUCA 024.1-2024

20

图像头定义 描述符

image_height_minus1 u(16)

marker_bit

image_width_minus1 u(16)

}

imh_extension_flag u(1)

if(imh_extension_flag) {

imh_extension_length u(15)

for(i = 0; i < imh_extension_length; i++)

imh_extension_data_byte[i] u(8)

}

while (! byte_aligned())

stuffing_bit '0'

}

6.1.4 图像特征数据定义

图像特征数据定义见表12。

表 12 图像特征数据定义

图像编码数据定义 描述符

image_feature_data() {

rate_control_q_id u(5)

for (i = 0; i < C; i++)

for (j = 0; j < zH; j++)

for (k = 0; k < zW; k++)

z[i][j][k] ne(v)

yH = zH * zScaleFactor

yW = zW * zScaleFactor

for (i = 0; i < C; i++)

for (j = 0; j < yH; j++)

for (k = 0; k < yW; k++)

y_residue[i][j][k] ne(v)

ifd_extension_flag u(1)

if (ifd_extension_flag) {

ifd_extension_length u(15)

for(i = 0; i < ifd_extension_length; i++)

ifd_extension_data_byte[i] u(8)

}

while (! byte_aligned())

T/SUCA 024.1-2024

21

图像编码数据定义 描述符

stuffing_bit '0'

}

6.1.5 图像结构数据定义

图像结构数据定义见表13。

表 13 图像结构数据定义

图像结构数据定义 描述符

image_structure_data() {

group_mask_block_size_id u(4)

for (i = 0; i < iH / bS; i++)

for (j = 0; j < iW / bS; j++)

group_mask_value[i][j] le(v)

bounding_boxes_enabled_flag u(1)

if (bounding_boxes_enabled_flag) {

bounding_boxes_num_minus1 u(16)

for (i = 0; i <= BoundingBoxNum; i++) {

bounding_box_x[i] u(14)

bounding_box_y[i] u(14)

bounding_box_h[i] u(14)

bounding_box_w[i] u(14)

bounding_box_category_id[i] u(8)

}

}

isd_extension_flag u(1)

if(isd_extension_flag) {

isd_extension_length u(32)

for(i = 0; i < isd_extension_length; i++)

isd_extension_data_byte[i] u(8)

}

while (! byte_aligned())

stuffing_bit '0'

}

6.1.6 图像重建数据定义

图像重建数据定义见表14。

表 12 图像特征数据定义（续）

T/SUCA 024.1-2024

22

表 14 图像重建数据定义

图像重建数据定义 描述符

image_rec_data() {

crop_left_size u(6)

crop_right_size u(6)

crop_upper_size u(6)

crop_bottom_size u(6)

rec_image_format_id u(4)

bit_depth_id u(1)

}

6.2 语义描述

6.2.1 图像头语义描述

图像头起始码 icm_header_start_code
位串‘0x00000180’。标识图像头的开始。

档次 profile_id
4位无符号整数。表示位流符合的档次。档次应符合附录B的规定。

超先验张量宽度 z_width_minus1
8位无符号整数。表示超先验张量的宽度zW，其值等于z_width_minus1的值加1。

超先验张量高度 z_height_minus1
8位无符号整数。表示超先验张量的高度zH，其值等于z_height_minus1的值加1。

图像特征类型标号 feature_type_id
8位无符号整数。表示能够使用解码的图像特征的任务网络类型，该类型与标号之间的关系见表15。

表 15 任务网络类型与 feature_type_id之间的关系

feature_type_id的值 任务网络类型

0 Faster R-CNN X101-FPN（目标检测）

1 Mask R-CNN X101-FPN（实例分割）

2 Keypoint R-CNN X101-FPN（姿态估计）

3~256 保留

图像结构数据允许标志 image_structure_enabled_flag
二值变量。值为‘1’表示允许使用图像结构化数据，值为‘0’表示不允许使用图像结构化数据。

图像重建数据允许标志 image_rec_enabled_flag
二值变量。值为‘1’表示允许使用图像重建数据，值为‘0’表示不允许使用图像重建数据。

图像宽度 image_width_minus1
16位无符号整数。表示图像的宽度iW，其值等于image_width_minus1的值加1。

图像高度 image_height_minus1
16位无符号整数。表示图像的高度iH，其值等于image_height_minus1的值加1。

图像头扩展标志 imh_extension_flag

T/SUCA 024.1-2024

23

二值变量。值为‘0’表示图像头中不包含扩展数据，其值为‘1’表示图像头中包含扩展数据。

图像头扩展数据长度 imh_extension_length
15位无符号整数。表示图像头中扩展数据的长度，以字节为单位。如果位流中不存在

imh_extension_length，则imh_extension_length的值等于0。虽然imh_extension_length在符合本文件的位

流中不存在，但imh_extension_length的使用可以在本文件的某些未来版本中指定，并且符合本文件的解

码器也应允许imh_extension_length存在。

图像头扩展数据字节 imh_extension_data_byte[i]
8位无符号整数。imh_extension_data_byte[i]可以是任何值，它的存在和值不影响本文件中指定的

解码过程。符合本文件的解码器应忽略imh_extension_data_byte[i]的值。

6.2.2 图像特征数据语义描述

图像特征数据起始码 icm_feature_start_code
位串‘0x00000181’。标识图像特征数据的开始。

码率控制因子标号 rate_control_factor_id
5位无符号整数。表示解码应使用的码率控制因子qRC，码率控制因子标号和码率控制因子的对应

关系见表16。

表 16 码率控制因子

码率控制因子索引 码率控制因子qRC 码率控制因子索引 码率控制因子qRC

0 0.200 16 0.546

1 0.222 17 0.567

2 0.243 18 0.589

3 0.265 19 0.611

4 0.286 20 0.632

5 0.308 21 0.654

6 0.330 22 0.675

7 0.351 23 0.697

8 0.373 24 0.719

9 0.395 25 0.740

10 0.416 26 0.762

11 0.438 27 0.784

12 0.459 28 0.805

13 0.481 29 0.827

14 0.503 30 0.848

15 0.524 31 0.870

超先验张量元素 z[i][j][k]
表示超先验张量中第i个通道第j行第k列的元素，解析过程由ne(v)定义。

特征残差张量元素值 y_residue[i][j][k]
表示特征残差张量中第i个通道第j行第k列的元素，解析过程由ne(v)定义。

图像特征数据扩展标志 ifd_extension_flag

T/SUCA 024.1-2024

24

二值变量。值为‘0’表示图像特征数据中不包含扩展数据，其值为‘1’表示图像特征数据中包含

扩展数据。

图像特征数据扩展数据长度 ifd_extension_length
16位无符号整数。表示图像特征数据中扩展数据的长度，以字节为单位。如果位流中不存在

ifd_extension_length，则ifd_extension_length的值等于0。虽然ifd_extension_length在符合本文件的位流中

不存在，但ifd_extension_length的使用可以在本文件的某些未来版本中指定，并且符合本文件的解码器

也应允许ifd_extension_length存在。

图像特征数据扩展数据字节 ifd_extension_data_byte[i]
8位无符号整数。ifd_extension_data_byte[i]可以是任何值，它的存在和值不影响本文件中指定的解

码过程。符合本文件的解码器应忽略ifd_extension_data_byte[i]的值。

6.2.3 图像结构数据语义描述

图像结构数据起始码 icm_structure_start_code
位串‘0x00000182’。标识图像结构数据的开始。

块掩膜覆盖区域尺寸大小标号 group_mask_block_size_id
4位无符号整数。规定块掩膜中一个掩膜点在图像中覆盖的方形区域的尺寸大小bS（见表17）。语

义块掩膜中所有掩膜点在图像中覆盖的方形区域的尺寸大小应一致。

表 17 块掩膜中掩膜点对应图像中的区域尺寸大小

group_mask_block_size_id的值 bS的值

0 16

1 32

2~15 保留

块掩膜值 group_mask_value[i][j]
表示块掩膜中第i行第j列的值，解析过程由le(v)定义。

目标框允许标志 bounding_boxes_enabled_flag
二值变量。值为‘1’表示允许使用目标框，值为‘0’表示不允许使用目标框。

目标框数 bounding_boxes_num_minus1
16位无符号整数。表示目标框数目BoundingBoxNum，其值为bounding_boxes_num_minus1的值加1。

目标框起始点横坐标 bounding_box_x[i]
14位无符号整数。表示第i个目标框的起始点在图像中的横坐标值。

目标框起始点纵坐标 bounding_box_y[i]
14位无符号整数。表示第i个目标框的起始点在图像中的纵坐标值。

目标框宽度 bounding_box_w[i]
14位无符号整数。表示第i个目标框的宽度。

目标框高度 bounding_box_h[i]
14位无符号整数。表示第i个目标框的高度。

目标框类别标号 bounding_box_category_id[i]
8位无符号整数。规定第i个目标框的类别标号（见表18）。

T/SUCA 024.1-2024

25

表 18 语义信息目标框类别

bounding_box_category_id[i]的值 类别

0 背景

1 人

2 车

3~255 保留

图像结构数据扩展标志 isd_extension_flag
二值变量。值为‘0’表示图像结构数据中不包含扩展数据，其值为‘1’表示图像结构数据中包含

扩展数据。

图像结构数据扩展数据长度 isd_extension_length
16位无符号整数。表示图像结构数据中扩展数据的长度，以字节为单位。如果位流中不存在

isd_extension_length，则isd_extension_length的值等于0。虽然isd_extension_length在符合本文件的位流中

不存在，但isd_extension_length的使用可以在本文件的某些未来版本中指定，并且符合本文件的解码器

也应允许isd_extension_length存在。

图像结构数据扩展数据字节 isd_extension_data_byte[i]
8位无符号整数。isd_extension_data_byte[i]可以是任何值，它的存在和值不影响本文件中指定的解

码过程。符合本文件的解码器应忽略isd_extension_data_byte[i]的值。

6.2.4 图像重建数据语义描述

图像重建数据起始码 icm_rec_start_code
位串‘0x00000184’。标识图像重建数据的开始。

左边界裁剪大小 crop_left_size
6位无符号整数。表示重建的图像的左边界应裁剪掉的像素的列数。

右边界裁剪大小 crop_right_size
6位无符号整数。表示重建的图像的右边界应裁剪掉的像素的列数。

上边界裁剪大小 crop_upper_size
6位无符号整数。表示重建的图像的上边界应裁剪掉的像素的行数。

下边界裁剪大小 crop_bottom_size
6位无符号整数。表示重建的图像的下边界应裁剪掉的像素的行数。

重建图像数据格式标号 rec_image_format_id
4位无符号整数。其值和输出图像数据格式之间的对应关系见表19。

表 19 输出图像数据格式

rec_image_format_id的值 数据格式

0 YUV420

1 YUV422

2 YUV444

3 sRGB

4-15 保留

T/SUCA 024.1-2024

26

重建图像位宽标号 bit_depth_id
二值变量。值为‘0’表示输出图像的位宽等于8，其值为‘1’表示输出图像的位宽等于10。

7 解析过程

7.1 通则

该过程的输入是码流的当前指针位置。

该过程的输出是语法元素的值，这些语法元素使用的描述符应是u(n)或f(n)或le(v)或ne(v)中的一种。

该过程进行以下操作之一：

——如果语法元素的描述符是 u(n)，应使用 7.2 的操作；

——如果语法元素的描述符是 f(n)，应使用 7.3 的操作；

——如果语法元素的描述符是 ne(v)，应使用 7.4 的操作；

——如果语法元素的描述符是 le(v)，应使用 7.5 的操作。

7.2 无符号整数解析

无符号整数的解析值为函数read_bits(n)（见5.9.2.4）的返回值，该返回值用高位在前的二进制表

示。

7.3 固定位宽符号解析

固定位宽符号的解析值为函数read_bits(n)（见5.9.2.4）的返回值，该函数用于取特定值的连续n
个二进制位。

7.4 ne(v)符号解析

7.4.1 通则

该操作的过程为：

a) 按照附录 C约定的方式在神经网络中加载模型参数；

b) 如果当前语法元素是 z，进行 7.4.2 的初始化操作，然后执行 7.4.3 的操作；

c) 如果当前语法元素是 y_residue,进行 7.4.2 的初始化操作，然后执行 7.4.4 的操作。

7.4.2 初始化

该过程包括以下操作：

a) 按照如下计算设定MaskCdf、MaskBypass和 StateLowerBound的值：

MaskCdf = 0x0000000000000001 << CdfPrecision – 1

MaskBypass = 0x00000001 << BypassPrecision – 1

StateLowerBound = 0x0000000000000001 << (StatePrecision – 1)

b) 按照如下计算设置 State的初始值：

StateLSB = read_bits(StatePrecision)

StateMSB = read_bits(StatePrecision)

State = StateLSB | (StateMSB << StatePrecision)

c) 如果当前语法元素是 z，

1) 将 CDFLength[:zN]按照 D.1的要求设置；

2) 将 CDFS[:zN][:]按照 D.1的要求设置；

T/SUCA 024.1-2024

27

3) 将MaxValues[:zN]按照 D.1的要求设置；

4) 将 Offsets[:zN]按照 D.1的要求设置；

5) 将 Indexs[:C][:zH][:zW]按照 D.1的要求设置。

d) 如果当前语法元素是 y_residue，

1) 将 CDFLength[:yN]按照 D.2的要求设置；

2) 将 CDFS[:yN][:]按照 D.2的要求设置；

3) 将MaxValues[:yN]按照 D.2的要求设置；

4) 将 Offsets[:yN]按照 D.2的要求设置；

5) 将 ScaleTable[:yN]按照 D.2的要求设置；

6) 进行 7.4.5 的概率估计操作，得到 Indexs[:C][:yH][:yW]。

7.4.3 z的解析

该解析操作的输入为：码流的当前指针位置。

该解析操作的输出为：z[:C][:zH][:zW]。
该过程包括以下操作：

a) 令 i=0，j=0，k=0，循环执行以下操作：

1) 将 dN设置为 CDFLength[Indexs[i][j][k]]；
2) 将 CDF[:dN]设置为 CDFS[Indexs[i][j][k]][:dN]；
3) 将MaxValue设置为MaxValues[Indexs[i][j][k]]；
4) 将 Offset设置为 Offsets[Indexs[i][j][k]]；
5) 执行 7.4.6 的操作，得到 z[i][j][k]的值；

6) 令 k = k + 1；
7) 如果 k的值等于 zW，令 j = j + 1，k = 0；
8) 如果 j的值等于 zH，令 i = i + 1，j = 0；
9) 如果 i的值等于 C，结束循环。

7.4.4 y_residue的解析

该解析操作的输入为：码流的当前指针位置。

该解析操作的输出为：y_residue[:C][:yH][:yW]。
该过程包括以下操作：

a) 令 i=0，j=0，k=0，循环执行以下操作：

1) 将 dN设置为 CDFLength[Indexs[i][j][k]]；
2) 将 CDF[:dN]设置为 CDFS[Indexs[i][j][k]][:dN]；
3) 将MaxValue设置为MaxValues[Indexs[i][j][k]]；
4) 将 Offset设置为 Offsets[Indexs[i][j][k]]；
5) 执行 7.4.6 的操作，得到 y_residue[i][j][k]的值；

6) 令 k = k + 1；
7) 如果 k的值等于 yW，令 j = j + 1，k = 0；
8) 如果 j的值等于 yH，令 i = i + 1，j = 0；
9) 如果 i的值等于 C，结束循环。

7.4.5 概率估计

该过程的输入为：z[:C][:zH][:zW]。

T/SUCA 024.1-2024

28

该过程的输出为：Indexs[:C][:yH][:yW]。
该过程中使用的概率估计网络见图 1，依次执行以下步骤：

a) 使用二维整数卷积 IntConv(C, C, 1, 1, 1)(z[:C][:zH][:zW])；
b) 使用标准激活函数 ReLU()；
c) 使用二维整数卷积 IntConv(C, C, 1, 3, 3)；
d) 使用标准激活函数 ReLU()；
e) 使用二维整数卷积 IntConv(C, C * 16, 1, 1, 1)；
f) 使用超分重组 Shuffle(4)；
g) 使用 Crop(yH, yW)；
h) 使用 ABS()；
i) 使用 Clip(0, 2^yP – 1)，得到 Scale[:C][:yH][:yW]；
j) 进行如下计算，得到 Indexs[:C][:yH][:yW]：

for (i = 0; i < C; i++) {

for (j = 0; j < yH; j++) {

for (k = 0; k < yW; k++) {

Indexs[i][j][k] = yN - 1

Scale[i][j][k] = (Scale[i][j][k] < ScaleLowBound) ? ScaleLowBound :
Scale[i][j][k]

for (x = 0; x < yN; x++) {

if (Scale[i][j][k] < ScaleTable[x])

Indexs[i][j][k]--

}

}

}

In
tC
on
v(
C
,C
,1
,1
,1
)

R
eL
U
()

In
tC
on
v(
C
,C
,1
,3
,3
)

R
eL
U
()

In
tC
on
v(
C
,C
*1
6,
1,
1,
1)

Sh
uf
fle
(4
)

C
ro
p(
H
3,
W
3)

z

A
B
S(
)

C
lip
(0
,2
^y
P
-1
)

Scale

图 1 概率估计网络

7.4.6 数值熵解析

7.4.6.1 通则

该过程的输入包含：

——码流的当前指针位置；

——State。
该过程的输出为：Value。

T/SUCA 024.1-2024

29

该过程的操作包括：

a) 按照如下操作得到 ParseVal：
CDFCur = State & MaskCdf

ParseVal = 0

while (CDF[ParseVal] <= CDFCur) {

ParseVal++

}

b) 按照如下操作更新 State：
CdfStart = CDF[ParseVal]

Freq = CDF[ParseVal + 1] – CdfStart

State = Freq * (State >> CdfPrecision) + (State & MaskCdf) – CdfStart

c) 进行 7.4.6.2 的解析状态值检验，将 State设置为检验后的 NewState；
d) 如果 ParseVal的值和MaxValue的值相等，则进行 7.4.6.3 的熵解析跳过，将解析值 ParseVal

的值设置为熵解析跳过得到的 RawVal；
e) 将 Value的值设置为 ParseVal与 Offset的加和。

7.4.6.2 解析状态值检验

该过程的输入包含：

——码流的当前指针位置；

——State。
该过程的输出为：NewState。
该过程的操作包括：

a) 如果 State的值小于 StateLowerBound，执行以下计算：

New = read_bits(StatePrecision)

NewState= (State << StatePrecision) | New

7.4.6.3 熵解析跳过

该过程的输入包含：

——码流的当前指针位置；

——State。
该过程的输出为：RawVal。
该过程的操作包括：

a) 将 BypassLength的值初始化为 0，循环进行以下操作：

1) 进行 7.4.6.4 的数据读取，得到 BypassVal和 State；
2) 将 BypassLength的值设置为 BypassLength和 BypassVal 的加和值；

3) 如果 BypassVal的值不等于MaskBypass，结束循环。

b) 将 RawVal和 j的值均初始化为 0，循环进行 BypassLength 次以下操作：

1) 进行 7.4.6.4 的数据读取，得到 BypassVal和 State；
2) 执行如下计算：

RawVal = (BypassVal << (j * BypassPrecision)) | RawVal

c) 执行如下计算：

T/SUCA 024.1-2024

30

if (RawVal & 1)

RawVal = –(RawVal >> 1) – 1

else

RawVal = (RawVal >> 1) + MaxValue

7.4.6.4 跳过熵解析的数据读取

该过程的输入包含：

——码流的当前指针位置；

——State。
——该过程的输出为：

——BypassVal；
——State。
该过程的操作包括：

a) 执行以下计算：

BypassVal = State & MaskBypass

state = state >> bypass_precision

b) 进行 7.4.6.2 的解析状态值检验，将 State设置为检验后的 NewState。

7.5 符号查表解析

7.5.1 group_mask_value的解析

该解析操作的输入为：码流的当前指针位置。

该解析操作的输出为：分组掩膜group_mask_value[:(iH / bS)][:(iW / bS)]。
该过程包括以下操作：

a) 令 i=0~(iH / bS)，每次执行以下操作：

1) 令 j=0~(iW / bS)，每次按照附录 D.3 中表 D.3 规定的块掩膜码表进行解析得到

group_mask_value[i][j]的值。

8 解码过程

8.1 通则

解码过程的输入是图像位流，输出包括已解码的图像结构数据、已解码的图像特征数据和已解码的

图像重建数据中的一种或多种。

解码过程进行以下操作：

a) 在神经网络中加载附录 C 中规定的神经网络模型参数；

b) 解析图像位流（见 8.2）；

c) 如果 image_structure_enabled_flag的值为 1，解码图像结构数据（见 8.4），输出分组掩膜和目

标框；

d) 解码图像特征数据（见 8.3）；

e) 如果 image_rec_enabled_flag的值为 1，解码图像重建数据（见 8.5），输出重建图像；否则，

输出重建张量。

注：图像特征数据可以通过特征适配以用于本文件在表15中约定的任务网络以外的其他任务网络，见附录E。

T/SUCA 024.1-2024

31

8.2 解析图像位流

该过程进行以下操作：

a) 按照第 6章规定的位流中语法元素的顺序，使用第 7 章规定的解析过程逐个解析图像位流中的

语法元素并获得语法元素的解析值；

b) 按照第 6章中的规定，根据这些语法元素的解析值推导得到的本文件中的全局变量的值。

8.3 解码图像特征数据

8.3.1 通则

解码过程依次执行以下操作：

a) 进行特征张量解码（见 8.3.2），得到特征张量 y[:C][:yH][:yW]；
b) 进行特征张量超分（见 8.3.3），得到重建张量 r[:C][:rH][:rW]。

8.3.2 特征张量解码

8.3.2.1 通则

该过程的输入为：

——y_residue[:C][:yH][:yW]；
——z[:C][:zH][:zW]。
该过程的输出为：y[:C][:yH][:yW]。
该过程依次执行以下操作：

a) 进行反量化（见 8.3.2.2）；

b) 进行超先验张量超分（见 8.3.2.3）；

c) 进行特征张量预测补偿（见 8.3.2.4）；

d) 进行特征张量调制（见 8.3.2.5）。

8.3.2.2 反量化

该过程的输入为：y_residue[:C][:yH][:yW]。
该过程的输出为：yResDQ[:C][:yH][:yW]。
该过程执行以下计算：

for (i = 0; i < C; i++)

for (j = 0; j < yH; j++)

for (k = 0; k < yW; k++)

yResDQ[i][j][k] = float(y_residue[i][j][k])

8.3.2.3 超先验张量超分

该过程的输入为：z[:C][:zH][:zW]。
该过程的输出为：yHyper[:C * 2][:yH][:yW]。
该过程中使用的超分网络见图 2，依次执行以下步骤：

a) 使用二维卷积 Conv(C, C, 1, 1, 1)；
b) 使用二维转置卷积 Tconv(C, C, 2, 4, 4)；
c) 使用张量裁剪 Crop(zH * 2, zW * 2)；

T/SUCA 024.1-2024

32

d) 使用渗漏激活函数 LeakyReLU()；
e) 使用二维卷积 Conv(C, C, 1, 3, 3)；
f) 使用二维转置卷积 Tconv(C, C, 2, 4, 4)；
g) 使用张量裁剪 Crop(yH, yW)；
h) 使用渗漏激活函数 LeakyReLU()；
i) 使用二维卷积 Conv(C, C * 2, 1, 3, 3)；
j) 使用渗漏激活函数 LeakyReLU()，得到 yHyper[:C * 2][:yH][:yW]。

C
on
v(
C
,C
,1
,1
,1
)

Tc
on
v(
C
,C
,2
,4
,4
)

C
ro
p(
zH

*2
,z
W
*2
)

Le
ak
yR

eL
U
()

C
on
v(
C
,C
,1
,3
,3
)

Tc
on
v(
c,
c,
2,
4,
4)

C
ro
p(
yH

,y
W
)

z

Le
ak
yR

eL
U
()

C
on
v(
C
,C
*2
,1
,3
,3
)

yHyper

Le
ak
yR

eL
U
()

图 2 超先验张量超分网络

8.3.2.4 特征张量预测补偿

8.3.2.4.1 通则

该过程的输入为：

——yHyper[:C * 2][:yH][:yW]；
——yResDQ[:C][:yH][:yW]。
输出为：yRec[:C][:yH][:yW]。
该过程依次执行以下操作：

a) 拆分 yHyper[:C * 2][:yH][:yW]：
1) 进行张量填充：

yHP = yH + yH % 2

yWP = yW + yW % 2

yHyperPad[:C * 2][:yHP][:yWP] = Pad(0, yH % 2, 0, yW % 2)(yHyper[:C * 2][:yH][:yW])

2) 进行交叉降分重组：

yHyperPadDown[:C * 8][:yHP / 2][:yWP / 2] = CrossDownShuffle(yHyperPad[:C * 2][:yHP][:yWP])

3) 进行张量拆分：

for (i = 0; i < 4; i++)

yHyperPadDownPart[i][:C * 2][:yHP / 2][:yWP / 2] =
yHyperPadDown[C * 2 * i:C * 2 * (i+1)][:yHP / 2][:yWP / 2]

b) 拆分 yResDQ[:C][:yH][:yW]：
1) 进行张量填充：

yResDQPad[:C][:yHP][:yWP] = Pad(0, yH % 2, 0, yW % 2)(yResDQ[:C][:yH][:yW])

2) 进行交叉降分重组：

yResDQPadDown[:C * 4][:yHP / 2][:yWP / 2] = CrossDownShuffle(yResDQPad[:C][:yHP][:yWP])

T/SUCA 024.1-2024

33

3) 进行张量拆分，

for (i = 0; i < 8; i++)

yResDQPadDownPart[i][:C / 2][:yHP / 2][:yWP / 2] =
yResDQPadDown[C / 2 * i:C / 2 * (i+1)][:yHP / 2][:yWP / 2]

c) 进行第 0阶特征张量预测（见 8.3.2.4.2）；

d) 进行第 1阶特征张量预测（见 8.3.2.4.3）；

e) 进行第 2阶特征张量预测（见 8.3.2.4.4）；

f) 进行第 3阶特征张量预测（见 8.3.2.4.5）；

g) 进行预测张量调整（见 8.3.2.4.10）；

h) 进行第 4阶特征张量预测（见 8.3.2.4.6）；

i) 进行第 5阶特征张量预测（见 8.3.2.4.7）；

j) 进行第 6阶特征张量预测（见 8.3.2.4.8）；

k) 进行第 7阶特征张量预测（见 8.3.2.4.9）；

l) 进行交叉超分重组：

yRec[:C][:yH][:yW] = CrossUpShuffle(yTmp[:C * 4][:yHP / 2][:yWP / 2])

8.3.2.4.2 第 0阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[0][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[0][:C / 2][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[:C / 2][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行张量填充：

yHyperPadDownPartCPad[0][:C * 3][:yHP / 2][:yWP / 2] =
Pad(0, 0, 0, 0, 0, C)(yHyperPadDownPart[0][:C * 2][:yHP / 2][:yWP / 2])

b) 将 i设置为 0，进行预测融合（见 8.3.2.4.11）；

c) 进行预测补偿：

yTmp[:C / 2][:yHP / 2][:yWP / 2]=
yResDQPadDownPart[0][:C / 2][:yHP / 2][:yWP / 2] + yPredTmp[:C / 2][:yHP / 2][:yWP / 2]

8.3.2.4.3 第 1阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[1][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[1][:C / 2][:yHP / 2][:yWP / 2]；
——yTmp[:C / 2][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C / 2:C][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] =
Conv(C / 2, C / 2, 1, 3, 3)(yTmp[:C / 2][:yHP / 2][:yWP / 2])

b) 进行张量填充：

yHyperPadDownPartCPad[1][:C * 5 / 2][:yHP / 2][:yWP / 2] =

T/SUCA 024.1-2024

34

Pad(0, 0, 0, 0, 0, C / 2)(yHyperPadDownPart[1][:C * 2][:yHP / 2][:yWP / 2])

c) 进行张量拼接：

yHyperPadDownPartCPad[1][:C * 3][:yHP / 2][:yWP / 2] =
Concat(yTmpConv[:C / 2][:yHP / 2][:yWP / 2],
yHyperPadDownPartCPad[1][:C * 5 / 2][:yHP / 2][:yWP / 2])

d) 将 i设置为 1，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C / 2:C][:yHP / 2][:yWP / 2] =
yResDQPadDownPart[1][:C / 2][:yHP / 2][:yWP / 2] + yPredTmp[C / 2:C][:yHP / 2][:yWP / 2]

8.3.2.4.4 第 2阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[2][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[2][:C / 2][:yHP / 2][:yWP / 2]；
——yTmp[:C][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C:C * 3 / 2][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] = Conv(C, C / 2, 1, 3, 3)(yTmp[:C][:yHP / 2][:yWP / 2])

b) 进行张量填充：

yHyperPadDownPartCPad[2][:C * 5 / 2][:yHP / 2][:yWP / 2] =
Pad(0, 0, 0, 0, 0, C/2)(yHyperPadDownPart[2][:C * 2][:yHP / 2][:yWP / 2])

c) 进行张量拼接：

yHyperPadDownPartCPad[2][:C * 3][:yHP / 2][:yWP / 2] =
Concat(yTmpConv[:C / 2][:yHP / 2][:yWP / 2],
yHyperPadDownPartCPad[2][:C * 5 / 2][:yHP / 2][:yWP / 2])

d) 将 i设置为 2，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C:C * 3 / 2][:yHP / 2][:yWP / 2] =
yResDQPadDownPart[2][:C / 2][:yHP / 2][:yWP / 2] + yPredTmp[C:C * 3 / 2][:yHP / 2][:yWP / 2]

8.3.2.4.5 第 3阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[3][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[3][:C / 2][:yHP / 2][:yWP / 2]；
——yTmp[:C * 3 / 2][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C * 3 / 2:C * 2][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] =
Conv(C * 3 / 2, C / 2, 1, 3, 3)(yTmp[:C * 3 / 2][:yHP / 2][:yWP / 2])

b) 进行张量填充：

yHyperPadDownPartCPad[3][:C * 5 / 2][:yHP / 2][:yWP / 2] =
Pad(0, 0, 0, 0, 0, C / 2)(yHyperPadDownPart[3][:C * 2][:yHP / 2][:yWP / 2])

T/SUCA 024.1-2024

35

c) 进行张量拼接：

yHyperPadDownPartCPad[3][:C * 3][:yHP / 2][:yWP / 2] =
Concat(yTmpConv[:C / 2][:yHP / 2][:yWP / 2],
yHyperPadDownPartCPad[3][:C * 5 / 2][:yHP / 2][:yWP / 2])

d) 将 i设置为 3，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C * 3 / 2:C * 2][:yHP / 2][:yWP / 2] =
yResDQPadDownPart[3][:C / 2][:yHP / 2][:yWP / 2] +
yPredTmp[C * 3 / 2:C * 2][:yHP / 2][:yWP / 2]

8.3.2.4.6 第 4阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[0][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[4][:C / 2][:yHP / 2][:yWP / 2]；
——yTmpModified[:C / 2][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C * 2:C * 5 / 2][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行张量填充：

yHyperPadDownPartCPad[0][:C * 5 / 2][:yHP / 2][:yWP / 2] =
Pad(0, 0, 0, 0, 0, C/2)(yHyperPadDownPart[0][:C * 2][:yHP / 2][:yWP / 2])

b) 进行张量拼接：

yHyperPadDownPartCPad[4][:C * 3][:yHP / 2][:yWP / 2] =
Concat(yTmpModified[:C / 2][:yHP / 2][:yWP / 2],
yHyperPadDownPartCPad[0][:C * 5 / 2][:yHP / 2][:yWP / 2])

c) 将 i设置为 4，进行预测融合（见 8.3.2.4.11）；

d) 进行预测补偿：

yTmp[C * 2:C * 5 / 2][:yHP / 2][:yWP / 2]=
yResDQPadDownPart[4][:C / 2][:yHP / 2][:yWP / 2] +
yPredTmp[C * 2:C * 5 / 2][:yHP / 2] [:yWP / 2]

8.3.2.4.7 第 5阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[1][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[5][:C / 2][:yHP / 2][:yWP / 2]；
——yTmpModified[C / 2:C][:yHP / 2][:yWP / 2]；
——yTmp[C * 2:C * 5 / 2][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C * 5 / 2:C * 3][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] =
Conv(C / 2, C / 2, 1, 3, 3)(yTmp[C * 2:C * 5 / 2][:yHP / 2][:yWP / 2])

b) 进行张量拼接：

Tmp[:C][:yHP / 2][:yWP / 2] =
Concat(yTmpModified[C / 2:C][:yHP / 2][:yWP / 2], yTmpConv[:C / 2][:yHP / 2][:yWP / 2])

c) 进行张量拼接：

T/SUCA 024.1-2024

36

yHyperPadDownPartCPad[5][:C * 3][:yHP / 2][:yWP / 2] =
Concat(Tmp[:C][:yHP / 2][:yWP / 2], yHyperPadDownPart[1][:C * 2][:yHP / 2][:yWP / 2])

d) 将 i 设置为 5，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C * 5 / 2:C * 3][:yHP / 2][:yWP / 2]=
yResDQPadDownPart[5][:C / 2][:yHP / 2][:yWP / 2] +
yPredTmp[C * 5 / 2:C * 3][:yHP / 2][:yWP / 2]

8.3.2.4.8 第 6阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[2][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[6][:C / 2][:yHP / 2][:yWP / 2]；
——yTmpModified[C:C * 3 / 2][:yHP / 2][:yWP / 2]；
——yTmp[C * 2:C * 3][:yHP / 2][:yWP / 2]。
该过程的输出为：yTmp[C * 3:C * 7 / 2][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] =
Conv(C, C / 2, 1, 3, 3)(yTmp[C * 2:C * 3][:yHP / 2][:yWP / 2])

b) 进行张量拼接：

Tmp[:C][:yHP / 2][:yWP / 2] =
Concat(yTmpModified[C:C * 3 / 2][:yHP / 2][:yWP / 2], yTmpConv[:C / 2][:yHP / 2][:yWP / 2])

c) 进行张量拼接：

yHyperPadDownPartCPad[6][:C * 3][:yHP / 2][:yWP / 2] =
Concat(Tmp[:C][:yHP / 2][:yWP / 2], yHyperPadDownPart[2][:C * 2][:yHP / 2][:yWP / 2])

d) 将 i设置为 6，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C * 3:C * 7 / 2][:yHP / 2][:yWP / 2]=
yResDQPadDownPart[6][:C / 2][:yHP / 2][:yWP / 2] +
yPredTmp[C * 3:C * 7 / 2][:yHP / 2][:yWP / 2]

8.3.2.4.9 第 7阶特征张量预测

该过程的输入为：

——yHyperPadDownPart[3][:C * 2][:yHP / 2][:yWP / 2]；
——yResDQPadDownPart[7][:C / 2][:yHP / 2][:yWP / 2]；
——yTmpModified[C * 3 / 2:C * 2][:yHP / 2][:yWP / 2]；
——yTmp[C * 2:C * 7 / 2][:yHP / 2][:yWP / 2]。
输出为：yTmp[C * 7 / 2:C * 4][:yHP / 2][:yWP / 2]。
该过程依次执行以下操作：

a) 进行二维卷积：

yTmpConv[:C / 2][:yHP / 2][:yWP / 2] =
Conv(C * 3 / 2, C / 2, 1, 3, 3)(yTmp[C * 2:C * 7 / 2][:yHP / 2][:yWP / 2])

b) 进行张量拼接：

Tmp[:C][:yHP / 2][:yWP / 2] =

T/SUCA 024.1-2024

37

Concat(yTmpModified[C * 3 / 2:C * 2][:yHP / 2][:yWP / 2], yTmpConv[:C / 2][:yHP / 2][:yWP / 2])

c) 进行张量拼接：

yHyperPadDownPartCPad[7][:C * 3][:yHP / 2][:yWP / 2] =
Concat(Tmp[:C][:yHP / 2][:yWP / 2], yHyperPadDownPart[3][:C * 2][:yHP / 2][:yWP / 2])

d) 将 i 设置为 7，进行预测融合（见 8.3.2.4.11）；

e) 进行预测补偿：

yTmp[C * 7 / 2:C * 4][:yHP / 2][:yWP / 2]=
yResDQPadDownPart[7][:C / 2][:yHP / 2][:yWP / 2] +
yPredTmp[C * 7 / 2:C * 4][:yHP / 2][:yWP / 2]

8.3.2.4.10 预测张量调整

该过程的输入为：yTmp[:C * 2][:yHP / 2][:yWP / 2]。
输出为：yTmpModified[:C * 2][:yHP / 2][:yWP / 2]。
该过程中使用的预测网络见图 3，该过程依次执行以下操作：

a) 进行交叉超分重组 CrossUpShuffle(yTmp[:C * 2][:yHP / 2][:yWP / 2])；
b) 进行二维卷积 Conv(C / 2, C, 1, 3, 3)；
c) 使用标准激活函数 ReLU()；
d) 进行二维卷积 Conv(C, C, 1, 3, 3)；
e) 使用标准激活函数 ReLU()；
f) 进行二维卷积 Conv(C, C / 2, 1, 3, 3)；
g) 进行交叉降分重组：yTmpModified[:C * 2][:yHP / 2][:yWP / 2] = CrossDownShuffle()。

C
on
v(
C/
2,
C
,1
,3
,3
)

R
eL
U
()

C
on
v(
C
,C
,1
,3
,3
)

R
eL
U
()

C
on
v(
C
,C
/2
,1
,3
,3
)

yTmpyTmpModified

C
ro
ss
U
pS
hu
ff
le
()

C
ro
ss
D
ow

nS
hu
ffl
e(
)

图 3 预测张量调整网络

8.3.2.4.11 预测融合

该过程的输入为：

——i，其取值范围是 0 至 7；

——yHyperPadDownPartCPad[i][:C * 3][:yHP / 2][:yWP / 2]。
输出为：yPredTmp[i * C / 2:(i + 1) * C / 2][:yHP / 2][:yWP / 2]。
该过程中使用的预测网络见图 4，当 i取不同的值时，该网络有不同的实例，应使用不同的参数，

该过程依次执行以下操作：

a) 进行二维卷积

Conv(C * 3, C * 9 / 4, 1, 1, 1)(yHyperPadDownPartCPad[i][:C * 3][:yHP / 2][:yWP / 2])；

T/SUCA 024.1-2024

38

b) 使用标准激活函数 ReLU()；
c) 进行二维卷积 Conv(C * 9 / 4,C * 7 / 4, 1, 1, 1)；
d) 使用标准激活函数 ReLU()；
e) 进 行 二 维 卷 积 ： yPredTmp[i * C / 2:(i + 1) * C / 2][:yHP / 2][:yWP / 2] =

Conv(C * 7 / 4,C / 2, 1, 3, 3)。

C
on
v(
C
*3
,C
*9
/4
,1
,1
,1
)

R
eL
U
()

C
on
v(
C
*9
/4
,C
*7
/4
,1
,1
,1
)

R
eL
U
()

C
on
v(
C
*7
/4
,C
/2
,1
,3
,3
)

yHyperPadDownPartCPadyPredTmp

图 4 预测融合网络

8.3.2.5 特征张量调制

该过程的输入为：yRec[:C][:yH][:yW]。
该过程的输出为：y[:C][:yH][:yW]。
该过程使用的特征张量调制参数生成网络见图 5，该过程依次执行以下步骤：

a) 对码率控制因子进行扩展：

for (i = 0; i < yH; i++)

for (j = 0; j < yW; j++)

qRCMap[i][j] = qRC

b) 进行二维卷积：

qRCTensor[:C][:yH][:yW] = Conv(1, C, 1, 3, 3)(qRCMap[:1][:yH][:yW])

c) 使用标准激活函数：

qRCTensor[:C][:yH][:yW] = ReLU(qRCTensor[:C][:yH][:yW])

d) 进行二维深度卷积：

qRCOffsetTmp[:C][:yH][:yW] = DepthConv(C, 1, 1, 1)(qRCTensor[:C][:yH][:yW])

e) 进行二维卷积：

qRCOffset[:C][:yH][:yW] = Conv(C, C, 1, 1, 1) (qRCOffsetTmp[:C][:yH][:yW])

f) 进行二维深度卷积：

qRCScaleTmp[:C][:yH][:yW] = DepthConv(C, 1, 1, 1)(qRCTensor[:C][:yH][:yW])

g) 进行二维卷积：

qRCScale[:C][:yH][:yW] = Conv(C, C, 1, 1, 1) (qRCScaleTmp[:C][:yH][:yW])

h) 执行以下计算：

for (i = 0; i < C; i++)

for (j = 0; j < yH; j++)

for (k = 0; k < yW; k++)

y[i][j][k] = (yRec[i][j][k] - qRCOffset[i][j][k]) * qRCScale[i][j][k]

T/SUCA 024.1-2024

39

C
on
v(
1,
C
,1
,3
,3
)

R
eL
U
()

D
ep
th
C
on
v(
C
,1
,1
,1
)

C
on
v(
C
,C
,1
,1
,1
)

qRCMapqRCOffset

D
ep
th
C
on
v(
C
,1
,1
,1
)

C
on
v(
C
,C
,1
,1
,1
)

qRCScale

图 5 特征张量调制参数生成网络结构

8.3.3 特征张量超分

该过程的输入为：y[:C][:yH][:yW]。
该过程的输出为：r[:C][:rH][:rW]，其中，

——rW = yW * yScaleFactor；
——rH = yH * yScaleFactor。
该过程使用的反变换网络见图 6，该过程依次执行以下操作：

a) 进行二维残差卷积：

T1[:C][:yH][:yW] = ResConv(C, C, 0)(y[:C][:yH][:yW])

b) 进行二维卷积：

T2[:C * 4][:yH][:yW] = Conv(C, C * 4, 1, 3, 3)(T1[:C][:yH][:yW])

c) 进行超分重组：

T3[:C][:yH * 2][:yW * 2] = Shuffle(2)(T2[:C * 4][:yH][:yW])

d) 进行二维加权卷积：

T4[:C][:yH * 2][:yW * 2] = MaskConv(C)(T3[:C][:yH * 2][:yW * 2])

e) 进行二维残差卷积：

T5[:C][:yH * 2][:yW * 2] = ResConv(C, C, 0)(T4[:C][:yH * 2][:yW * 2])

f) 进行二维卷积：

T6[:C * 4][:yH * 2][:yW * 2] = Conv(C, C * 4, 1, 3, 3)(T5[:C][:yH * 2][:yW * 2])

g) 进行超分重组：

T7[:C][:rH][:rW] = Shuffle(2)(T6[:C * 4][:yH * 2][:yW * 2])

h) 进行二维加权卷积:

T8[:C][:rH][:rW] = MaskConv(C)(T7[:C][:rH][:rW])

T/SUCA 024.1-2024

40

i) 使用二维残差卷积：

r[:C][:rH][:rW] = ResConv(C, C, 0)(T8[:C][:rH][:rW])

R
es
C
on
v(
C
,C
,0
)

C
on
v(
C
,C
*4
,1
,3
,3
)

y

Sh
uf
fle
(2
)

r

M
as
kC

on
v(
C
)

R
es
C
on
v(
C
,C
,0
)

C
on
v(
C
,C
*4
,1
,3
,3
)

Sh
uf
fle
(2
)

M
as
kC

on
v(
C
)

R
es
C
on
v(
C
,C
,0
)

图 6 特征张量超分网络结构

8.4 解码图像结构数据

8.4.1 通则

解码过程如下：

a) 如果 bounding_boxes_enabled_flag的值为 1，解码目标框（见 8.4.2），得到目标框。

8.4.2 解码目标框

该过程的输出为：目标框 BoundingBox[:BoundingBoxNum]。
该过程的操作如下：

a) 将 i的值初始化为 0，重复 BoundingBoxNum次以下操作：

1) 第 i个目标框的起始点的横坐标 BoundingBox[i]->x等于 bounding_box_x[i]的值；

2) 第 i个目标框的起始点的纵坐标 BoundingBox[i]->y等于 bounding_box_y[i]的值；

3) 第 i个目标框的高度 BoundingBox[i]->h 等于 bounding_box_h[i]的值；

4) 第 i个目标框的宽度 BoundingBox[i]->w等于 bounding_box_w[i]的值；

5) 第 i个目标框的类别标号 BoundingBox[i]->c 等于 bounding_box_category_id[i]的值；

6) 将 i的值加 1。

8.5 解码图像重建数据

该过程的输入为：r[:C][:rH][:rW]。
该过程的输出为：重建图像，其图像宽度 riW和高度 riH分别为：

——riW = rW * 4 - crop_left_size - crop_right_size；
——riH = rH * 4 - crop_upper_size - crop_bottom_size。
该过程使用的反变换网络见图 7，该过程依次执行以下操作：

a) 进行二维残差卷积：

RT1[:C][:rH][:rW] = ResConv(C, C, 1)(r[:C][:rH][:rW])

b) 进行二维加权卷积：

RT2[:C][:rH][:rW] = MaskConv(C)(RT1[:C][:rH][:rW])

c) 进行二维卷积：

T/SUCA 024.1-2024

41

RT3[:C / 2][:rH][:rW] = Conv(C, C / 2, 1, 3, 3)(RT2[:C][:rH][:rW])

a) 进行二维卷积：

RT4[:C * 2][:rH][:rW] = Conv(C / 2, C * 2, 1, 3, 3)(RT3[:C / 2][:rH][:rW])

b) 进行超分重组：

RT5[:C / 2][:rH * 2][:rW * 2] = Shuffle(2)(RT4[:C * 2][:rH][:rW])

c) 进行二维残差卷积：

RT6[:C / 2][:rH * 2][:rW * 2] = ResConv(C / 2, C / 2, 1)(RT5[:C / 2][:rH * 2][:rW * 2])

a) 进行二维残差卷积：

RT7[:C / 2][:rH * 2][:rW * 2] = ResConv(C / 2, C / 2, 1)(RT6[:C / 2][:rH * 2][:rW * 2])

b) 进行二维加权卷积：

RT8[:C / 2][:rH * 2][:rW * 2] = MaskConv(C / 2)(RT7[:C / 2][:rH * 2][:rW * 2])

c) 进行二维残差卷积：

RT9[:C / 2][:rH * 2][:rW * 2] = ResConv(C / 2, C / 2, 1)(RT8[:C / 2][:rH * 2][:rW * 2])

a) 进行二维残差卷积：

RT10[:C / 2][:rH * 2][:rW * 2] = ResConv(C / 2, C / 2, 1)(RT9[:C / 2][:rH * 2][:rW * 2])

b) 进行张量加和：

RT11[:C / 2][:rH * 2][:rW * 2] =
Add(RT5[:C / 2][:rH * 2][:rW * 2], RT10[:C / 2][:rH * 2][:rW * 2])

c) 进行二维卷积：

RT12[:C * 2][:rH * 2][:rW * 2] = Conv(C / 2, C * 2, 1, 3, 3)(RT11[:C / 2][:rH * 2][:rW * 2])

d) 进行超分重组：

RT13[:C / 2][:rH * 4][:rW * 4] = Shuffle(2)(RT12[:C * 2][:rH * 2][:rW * 2])

e) 使用二维残差卷积：

RT14[:C / 2][:rH * 4][:rW * 4] = ResConv(C / 2, C / 2, 1)(RT13[:C / 2][:rH * 4][:rW * 4])

f) 进行二维卷积：

RT15[:3][:rH * 4][:rW * 4] = Conv(C / 2, 3, 1, 3, 3)(RT14[:C / 2][:rH * 4][:rW * 4])

g) 进行裁剪：

for (j = crop_upper_size; j < rH * 4 - crop_bottom_size; j++) {

for (k = crop_left_size; k < rW * 4 - crop_right_size; k++) }

imR[j - crop_upper_size][k - crop_left_size] = RT15[0][j][k]

imG[j - crop_upper_size][k - crop_left_size] = RT15[1][j][k]

imB[j - crop_upper_size][k - crop_left_size] = RT15[2][j][k]

}

}

h) 如果 rec_image_format_id的值为 0或 1或 2，进行格式转换：

for (i = 0; i < riH; i++)

for (j = 0; j < riW; j++)

imY[i][j] = 0.257 * imR[i][j] + 0.504 * imG[i][j] + 0.098 * imB[i][j] + 16

imCb[i][j] = 0.439 * imR[i][j] - 0.368 * imG[i][j] - 0.071 * imB[i][j] + 128

imCr[i][j] = -0.148 * imR[i][j] - 0.291 * imG[i][j] + 0.439 * imB[i][j] + 128

i) 进行取整和截断，得到重建图像：

1) 如果 rec_image_format_id的值为 0，重建图像的亮度分量 im0[:riH][:riW]、色度 Cr分量

T/SUCA 024.1-2024

42

im1[:(riH+1)/2][:(riW+1)/2]和色度 Cb分量 im2[:(riH+1)/2][:(riW+1)/2]按照以下计算得

到：

for (i = 0; i < riH; i++)

for (j = 0; j < riW; j++)

im0[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imY[i][j] *4 ⌉) : clip3(0, 255, ⌈ imY[i][j] ⌉)

for (i = 0; i < (riH + 1) / 2; i++) {

for (j = 0; j < (riW + 1) / 2; j++) {

im1[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCb[i * 2][j * 2] *4 ⌉) :
clip3(0, 255, ⌈ imCb[i * 2][j * 2] ⌉)

im2[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCr[i * 2][j * 2] *4 ⌉) :
clip3(0, 255, ⌈ imCr[i * 2][j * 2] ⌉)

}

}

2) 如果 rec_image_format_id的值为 1，重建图像的亮度分量 im0[:riH][:riW]、色度 Cr分量

im1[:riH][:(riW+1)/2]和色度 Cb 分量 im2[:riH][:(riW+1)/2]按照以下计算得到：

for (i = 0; i < riH; i++)

for (j = 0; j < riW; j++)

im0[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imY[i][j] *4 ⌉) : clip3(0, 255, ⌈ imY[i][j] ⌉)

for (i = 0; i < riH; i++) {

for (j = 0; j < (riW + 1) / 2; j++) {

im1[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCb[i][j * 2] *4 ⌉) :
clip3(0, 255, ⌈ imCb[i][j * 2] ⌉)

im2[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCr[i][j * 2] *4 ⌉) :
clip3(0, 255, ⌈ imCr[i][j * 2] ⌉)

}

}

3) 如果 rec_image_format_id的值为 2，重建图像的亮度分量 im0[:riH][:riW]、色度 Cr分量

im1[:riH][:riW]和色度 Cb分量 im2[:riH][:riW]按照以下计算得到：

for (i = 0; i < riH; i++) {

for (j = 0; j < riW; j++) {

im0[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imY[i][j] *4 ⌉) : clip3(0, 255, ⌈ imY[i][j] ⌉)

im1[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCb[i][j] *4 ⌉) : clip3(0, 255, ⌈ imCb[i][j] ⌉)

im2[i][j] = bit_depth_id ? clip3(0, 1023, ⌈ imCr[i][j] *4 ⌉) : clip3(0, 255, ⌈ imCr[i][j] ⌉)

}

}

4) 如果 rec_image_format_id 的值为 3，重建图像的 R 分量 im0[:riH][:riW]、G 分量

im1[:riH][:riW]和 B分量 im2[:riH][:riW]按照以下计算得到：

for (i = 0; i < riH; i++) {

for (j = 0; j < riW; j++) {

im0[i][j] = clip3(0, 255, ⌈ imR[i][j] ⌉)

im1[i][j] = clip3(0, 255, ⌈ imG[i][j] ⌉)

im2[i][j] = clip3(0, 255, ⌈ imB[i][j] ⌉)

}

}

T/SUCA 024.1-2024

43

R
es
C
on
v(
C
,C
,1
)

C
on
v(
C
/2
,C
*2
,1
,3
,3
)

r

Sh
uf
fle
(2
)

RT11

M
as
kC

on
v(
C
/2
)

R
es
C
on
v(
C
/2
,C
/2
,1
)

C
on
v(
C
/2
,C
*2
,1
,3
,3
)

Sh
uf
fle
(2
)

R
es
C
on
v(
C
/2
,C
/2
,1
)

M
as
kC

on
v(
C
)

C
on
v(
C
,C
/2
,1
,3
,3
)

R
es
C
on
v(
C
/2
,C
/2
,1
)

R
es
C
on
v(
C
/2
,C
/2
,1
)

R
es
C
on
v(
C
/2
,C
/2
,1
)

C
on
v(
C
/2
,3
,1
,3
,3
)

图 7 图像重建网络结构

T/SUCA 024.1-2024

44

附 录 A

（规范性）

伪起始码方法

本附录定义了防止在位流中出现伪起始码的方法。起始码的形式、含义，以及为了使起始码字节对

齐而进行填充的方法见5.9.2和6.1.1。

为了防止出现伪起始码，编码时应按照以下方法处理：写入一位时，如果该位是一个字节的第二最

低有效位，检查该位之前写入的22位，如果这22位都是‘0’，在该位之前插入‘10’，该位成为下一

个字节的最高有效位。

解码时应按以下方法处理：每读入一个字节时，检查前面读入的两个字节和当前字节，如果这三个

字节构成位串‘0000 0000 0000 0000 0000 0010’，丢弃当前字节的最低两个有效位。丢弃一个字节

最低两个有效位可采用任意等效的方式，本文件不做规定。

在编码和解码时对于图像头中的数据不应采用上述方法。

T/SUCA 024.1-2024

45

附 录 B

（规范性）

档次

B.1 概述

档次提供了一种定义本文件的语法和语义的子集的手段。档次对位流进行了各种限制，同时也就规

定了对某一特定位流解码所需要的解码器能力。档次是本文件规定的语法、语义及算法的子集。符合某

个档次规定的解码器应完全支持该档次定义的子集。

本附录描述了不同档次所对应的各种限制。所有未被限定的语法元素和参数可以取任何本文件所允

许的值。如果一个解码器能对某个档次所规定的语法元素的所有允许值正确解码，则称此解码器在这个

档次上符合本文件。如果一个位流中不存在某个档次所不允许的语法元素，并且其所含有的语法元素的

值不超过此档次所允许的范围，则认为此位流在这个档次上符合本文件。

profile_id定义了位流的档次。

B.2 档次

本文件定义的档次见A。

表 B.1 档次

profile_id的值 档次

0x0 禁止

0x1 基本特征档次（Main profile）

0x2 基本图像档次（High profile）

其他 保留

基本特征档次的尾流应满足以下条件：

——profile_id的值应为 0x1；
——image_rec_enabled_flag的值应为 0；
——解析和解码过程中使用的常量符号及其对应值应符合表 B.2 的规定。

基本图像档次的尾流应满足以下条件：

——profile_id的值应为 0x2；
——image_rec_enabled_flag的值应为 1；
——解析和解码过程中使用的常量符号及其对应值应符合表 B.2 的规定。

表 B.2 常量符号及其对应的含义和值

常量符号 含义 对应值

C 通道数 128

zN z的累计概率列表数 128

yN y的累计概率列表数 64

yP y的概率精度 31

T/SUCA 024.1-2024

46

表B.2 常量符号及其对应的含义和值（续）

常量符号 含义 对应值

StatePrecision 状态值精度 32

CdfPrecision 频率值精度 16

BypassPrecision 熵解码跳过精度 4

ScaleLowBound 概率下限 0.11

zScaleFactor 超先验张量的放大倍数 4

yScaleFactor 特征张量的放大倍数 4

T/SUCA 024.1-2024

47

附 录 C

（规范性）

神经网络模型参数

神经网络模型参数包括神经网络中卷积操作使用的卷积核权重和偏置以及神经网络中其他操作的

预设参数。

解析和解码过程中使用的神经网络模型参数，按照PyTorch的序列化状态字典格式存储在电子附件

中，获取路径为：https://pan.zju.edu.cn/share/506555c6f2b1906fb4c549293f。

T/SUCA 024.1-2024

48

附 录 D

（规范性）

解析过程中使用的数据以及码表

D.1 解析 z[i][j][k]时使用的矩阵、列表和张量

解析语法元素z[i][j][k]时使用的矩阵、列表和张量及其获取方式如下：

——列表 CDFLength，其数据内容参见 URL0 的 csv文件，其存放格式为：令 i=0~zN，逐行存放

CDFLength[i]；
——矩阵 CDFS，其数据内容参见 URL1 的 csv 文件，其存放格式为：令 i=0~zN，逐行存放

CDFS[i][:]；
——列表 MaxValues，其数据内容参见 URL2 的 csv 文件，其存放格式为：令 i=0~zN，逐行存放

MaxValues[i]；
——列表Offsets，其数据内容参见URL3的 csv文件，其存放格式为：令 i=0~zN，逐行存放Offsets[i]；
——张量 Indexs，其数据内容参见URL4的 csv文件，其存放格式为：令 i=0~zN，逐行存放 Indexs[i]。
表 D.1给出了本章中地址编号所对应的获取地址。

表 D.1 地址编号 URL0～4对应的获取地址

地址编号 获取地址

URL0 https://pan.zju.edu.cn/share/9ffa3bd4936653b62edde793b4
URL1 https://pan.zju.edu.cn/share/7f28f3ee8841dd0ecd400a4981
URL2 https://pan.zju.edu.cn/share/12f16695be3d77134627de312b
URL3 https://pan.zju.edu.cn/share/a0d37a965e9a54dd860f259d94
URL4 https://pan.zju.edu.cn/share/967c95258b7ef510c50cd7b6b9

D.2 解析 y_residue[i][j][k]时使用的矩阵和列表

解析语法元素y_residue[i][j][k]时使用的矩阵和列表及其获取方式如下：

——列表 CDFLength，其数据内容参见 URL5 的 csv文件，其存放格式为：令 i=0~yN，逐行存放

CDFLength[i]；
——矩阵 CDFS，其数据内容参见 URL6 的 csv 文件，其存放格式为：令 i=0~yN，逐行存放

CDFS[i][:]；
——列表 MaxValues，其数据内容参见 URL7 的 csv 文件，其存放格式为：令 i=0~yN，逐行存放

MaxValues[i]；
——列表Offsets，其数据内容参见URL8的 csv文件，其存放格式为：令 i=0~yN，逐行存放Offsets[i]；
——列表 ScaleTable，其数据内容参见 URL9 的 csv 文件，其存放格式为：令 i=0~yN，逐行存放

ScaleTable[i]。
表 D.2给出了本章中地址编号所对应的获取地址。

表 D.2 地址编号 URL5～9对应的获取地址

地址编号 获取地址

URL5 https://pan.zju.edu.cn/share/90b79d6ddbd909cf6e251515ed
URL6 https://pan.zju.edu.cn/share/ab35cbfe233478f1d8b9eb6193
URL7 https://pan.zju.edu.cn/share/7f03cf5b8163109e4ce7e158dc
URL8 https://pan.zju.edu.cn/share/9f60a1e0307a201bb58af270b9
URL9 https://pan.zju.edu.cn/share/b102cbe51b6e23740b4dd8c65d

T/SUCA 024.1-2024

49

D.3 块掩膜码表

解析group_mask_value时使用的码表见表D.3。

表 D.3 块掩膜 group_mask_value的码表

符号值 符号串

0 0101

1 0100

2 0011

3 0010

4 0001

5 11111

6 11110

7 11101

8 11100

9 11010

10 11001

11 11000

12 10110

13 10101

14 10011

15 10010

16 10000

17 01111

18 01101

19 00001

20 00000

21 110110

22 101110

23 101001

24 100011

25 100010

26 011100

27 011000

28 1101110

29 1011110

30 1010001

31 0111011

32 0110011

33 0110010

T/SUCA 024.1-2024

50

符号值 符号串

34 11011110

35 10111110

36 10100000

37 01110100

38 110111111

39 101111110

40 101000010

41 011101011

42 011101010

43 1101111100

44 1010000111

45 1010000110

46 11011111011

47 10111111101

48 10111111100

49 101111111110

50 110111110101

51 101111111101

52 11011111010001

53 1101111101001

54 1011111111110

55 1011111111111

56 101111111100

57 1101111101000011111011110000000110100

58 110111110100001111101111000000011111110101011111111

59 110111110100001111101111000000011111110101111111111111110

60 11011111010000111110111100000001101010

61 110111110100001111101111000000011111111111111111111111111111011111110101011111100

62 11011111010000111110111100000001111111111111111111111111111101111111010101111111010

63 11011111010000111110111100000001111111111111111111111111111001

64 11011111010000110

65 110111110100001111101111000000011111111111111111111111111111010

66 11011111010000101

67 1101111101000011111011110000000111111111111111111111111111110110

68 110111110100001000

69 11011111010000111110111100000001111111111111111111111111111101110

70 11011111010000111110110

71 110111110100001111101111000000011111111111111111111111111111011110

72 1101111101000011111011111

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

51

符号值 符号串

73 1101111101000011111011110000000111111111111111111111111111110111110

74 11011111010000111110111101

75 11011111010000111110111100000001111111111111111111111111111101111110

76 110111110100001001110001

77 1101111101000010011100001

78 110111110100001001110000001

79 1101111101000011111011110000000111111111111111111111111111110111111110

80 11011111010000111110111100000000

81 11011111010000111110111100000001111111111111111111111111111101111111110

82 110111110100001001110000000110

83 110111110100001111101111000000011111111111111111111111111111011111111110

84 110111110100001111101111000000011110

85 1101111101000011111011110000000111111111111111111111111111110111111111110

86 11011111010000111110111100000001111111110

87 11011111010000111110111100000001111111111111111111111111111101111111111110

88 11011111010000111110111100000001111111111110

89 110111110100001111101111000000011111111111111111111111111111011111111111110

90 110111110100001111101111000000011111111111111110

91 1101111101000011111011110000000111111111111111111111111111110111111111111110

92 110111110100001111101111000000011111111111111111110

93 1101111101000011111011110000000111111111111111111111110

94 1101111101000011111011110000000111111111111111111111111110

95 11011111010000111110111100000001111111010110

96 1101111101000011111011110000000111111111111111111111111111110010

97 110111110100001111101111000000011111110101110

98 110111110100001111101111000000011111111111111111111111111110001011

99 1101111101000011111011110000000111111101011110

100 11011111010000111110111100000001111111111111111111111111111100111110

101 11011111010000111110111100000001111111010111110

102 1101111101000011111011110000000111111111111111111111111111110011111110

103 110111110100001111101111000000011111110101111110

104 1101111101000011111010101010

105 1101111101000011111011110000000111111101011111110

106 110111110100001111101111000011011

107 11011111010000111110111100000001111111010111111110

108 11011111010000111110101010111110

109 110111110100001111101111000000011111110100

110 1101111101000011111010101011111111

111 1101111101000011111011110000000111111101011111111110

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

52

符号值 符号串

112 110111110100001111101111000000011111110101010

113 11011111010000111110111100000001111111010111111111110

114 1101111101000011111011110000000111111111111111111111101011

115 110111110100001111101111000000011111110101111111111110

116 1101111101000011111011110000000111111101010111110

117 1101111101000011111011110000000111111101011111111111110

118 110111110100001111101111000000011111110101011111110

119 110111110100001111101111000000011111111111111111111111111111011111110101011110

120 110111110100001111101111000000011111111111111111111111111111011111110101010

121 1101111101000011111011110000000110101110

122 110111110100001111101111000000011

123 11011111010000111110111100000001111111010111111111111111111

124 110111110100001111101111000000011010111110

125 1101111101000011111011110000000111111101011111111111111111011

126 11011111010000111110111100000001111111111111111111111111111101111111010101111111001

127 1101111101000011111011110000000110101111111

128 110111110100001110

129 110111110100001111101111000000011111111111111111111111111111000

130 1101111101000011110

131 11011111010000111110111100000001111111111111111111111111111110

132 1101111101000001

133 1101111101000000

134 110111110100001111111

135 110111110100001111101111000000011111111111111111111111111111110

136 110111110100001111100

137 11011111010000111110111100000001111111111111111111111111111100110

138 1101111101000011111101

139 1101111101000011111011110000000111111111111111111111111111111110

140 1101111101000011111100

141 1101111101000010010

142 11011111010000100110

143 11011111010000111110111100000001111111111111111111111111111111110

144 110111110100001001111

145 1101111101000011111011110000000111111111111111111111111111110011110

146 1101111101000011111011101

147 110111110100001111101111000000011111111111111111111111111111111110

148 1101111101000011111011100

149 1101111101000010011101

150 11011111010000100111001

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

53

符号值 符号串

151 1101111101000011111011110000000111111111111111111111111111111111110

152 110111110100001111101111001

153 110111110100001111101111000000011111111111111111111111111111001111110

154 1101111101000011111011110001

155 11011111010000111110111100000001111111111111111111111111111111111110

156 11011111010000100111000001

157 110111110100001111101111000001

158 1101111101000011111011110000001

159 110111110100001111101111000000011111111111111111111111111111111111110

160 1101111101000010011100000000

161 110111110100001111101010100

162 11011111010000100111000000010

163 1101111101000011111011110000000111111111111111111111111111111111111110

164 110111110100001111101111000000010

165 110111110100001001110000000111

166 1101111101000011111011110000000110

167 11011111010000111110111100000001111111111111111111111111111111111111110

168 11011111010000111110111100000001110

169 11011111010000111110101010110

170 1101111101000011111011110000000111110

171 1101111101000011111011110000000110

172 11011111010000111110111100000001111110

173 1101111101000011111011110000000111111110

174 110111110100001111101111000000011111111110

175 11011111010000111110111100000001110

176 1101111101000011111011110000000111111111110

177 1101111101000011111010101011110

178 110111110100001111101111000000011111111111110

179 1101111101000011111011110000000110

180 1101111101000011111011110000000111111111111110

181 11011111010000111110111100000001111111111111110

182 1101111101000011111011110000000111111111111111110

183 11011111010000111110111100000001110

184 11011111010000111110111100000001111111111111111110

185 110111110100001111101010101111110

186 1101111101000011111011110000000111111111111111111110

187 11011111010000111110111100000001111111111111111111110

188 11011111010000111110111100000001111111111111111111111110

189 110111110100001111101111000000011111111111111111111111110

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

54

符号值 符号串

190 11011111010000111110111100000001111111111111111111111111110

191 11011111010000111110111100000001110

192 110111110100001111101111000000011111111111111111111111111110000

193 11011111010000111110111100000001111111010100

194 1101111101000011111011110000000111111111111111111111111111100011

195 1101111101000011111011110000000110

196 11011111010000111110111100000001111111111111111111111111111000100

197 110111110100001111101111000000011111111111111111111111111111001110

198 110111110100001111101111000000011111111111111111111111111110001010

199 11011111010000111110111100000001110

200 11011111010000111110100

201 1101111101000011111011110000000111111101010110

202 110111110100001111101011

203 1101111101000011111011110000000110

204 1101111101000011111010100

205 1101111101000011111011110000000111111111111111111111111111110011111111

206 11011111010000111110101011

207 11011111010000111110111100000001110

208 110111110100001111101111000010

209 110111110100001111101111000000011111110101011110

210 1101111101000011111011110000111

211 1101111101000011111011110000000110

212 11011111010000111110111100001100

213 110111110100001111101010101110

214 110111110100001111101111000011010

215 11011111010000111110111100000001110

216 1101111101000011111011110000000111111100

217 11011111010000111110111100000001111111010101111110

218 11011111010000111110111100000001111111011

219 1101111101000011111011110000000110

220 11011111010000111110111100000001111111111111111111111111111101111111111111111

221 11011111010000111110111100000001111111111111111111111111111101111111111111110

222 1101111101000011111010101011111110

223 11011111010000111110111100000001110

224 1101111101000011111011110000000111111111111111111111100

225 11011111010000111110111100000001111111111111111111111111111101111111010100

226 11011111010000111110111100000001111111111111111111111011

227 1101111101000011111011110000000110

228 110111110100001111101111000000011111111111111111111110100

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

55

符号值 符号串

229 11011111010000111110111100000001111111010101110

230 1101111101000011111011110000000111111111111111111111101010

231 11011111010000111110111100000001110

232 1101111101000011111011110000000111111111111111111111111111110111111100

233 1101111101000011111011110000000111111111111111111111111111110111111101010110

234 11011111010000111110111100000001111111111111111111111111111101111111011

235 1101111101000011111011110000000110

236 110111110100001111101111000000011111111111111111111111111111011111110100

237 110111110100001111101111000000011111110101111111110

238 1101111101000011111011110000000111111111111111111111111111110111111101011

239 11011111010000111110111100000001111111010111111111111110

240 11011111010000111110111100000001100

241 110111110100001111101111000000011010110

242 110111110100001111101111000000011011

243 1101111101000011111011110000000111111111111111111111111111110111111101010111110

244 11011111010000111110111100000001111111111111111111111111111101111111010101110

245 1101111101000011111011110000000111111101011111111111111110

246 11011111010000111110111100000001110

247 11011111010000111110111100000001101011110

248 110111110100001111101111000000011111111111111111111111111111011111110101011111111

249 110111110100001111101111000000011111111111111111111111111111011111110101011111101

250 110111110100001111101111000000011111110101111111111111111100

251 1101111101000011111011110000000110101111110

252 1101111101000011111011110000000111111101011111111111111111010

253 11011111010000111110111100000001111111111111111111111111111101111111010101111111011

254 11011111010000111110111100000001111111111111111111111111111101111111010101111111000

255 1101111101000011111011110000000111111111111111111111111111101

表 D.3 块掩膜 group_mask_value的码表（续）

T/SUCA 024.1-2024

56

附 录 E

（资料性）

特征适配

特征适配网络负责将特征向量尺寸调整为智能任务网络所需的特征向量，其中参考软件中特征适配

器的网络结构由一层卷积层以及 ReLU激活层组成（见图 E.1）。

图 E.1 特征适配网络结构

当目标检测任务网络替换为 YOLO V3，考虑到 YOLO V3的 Bacbone的变化，一层卷积层适配器

的参数量过少，在解码特征与 YOLO V3 接入点所需特征表征形式可能难以转化，所以训练适配器时

除了采用一层卷积层外，还尝试了采用类似降采样的 Res-Block 组成的网络来进行适配，其网络结构

见图 E.2。

C
on
v(
C
,C
,1
,3
,3
)

C
on
v(
C
,C
,1
,3
,3
)

C
on
v(
C
,C
,1
,3
,3
)

C
on
v(
C
,C
,1
,3
,3
)

C
on
v(
C
,C
,2
,3
,3
)

重建特征适配特征

图 E.2 特征适配网络结构

	目  次
	前  言
	引  言
	面向机器智能的数据编码 第1部分：图像
	1　范围
	2　规范性引用文件
	3　术语和定义
	4　缩略语
	5　约定
	5.1　通则
	5.2　算术运算符
	5.3　逻辑运算符
	5.4　关系运算符
	5.5　位运算符
	5.6　赋值
	5.7　数学函数
	5.8　结构关系符
	5.9　位流语法、解析过程和解码过程的描述方法
	5.9.1　描述方法
	5.9.2　函数
	5.9.2.1　概述
	5.9.2.2　byte_aligned()
	5.9.2.3　next_bits(n)
	5.9.2.4　read_bits(n)

	5.9.3　描述符
	5.9.4　保留、禁止和标记位

	5.10　数据形式
	5.10.1　张量和张量中的元素
	5.10.2　矩阵和矩阵中的元素
	5.10.3　列表和列表中的元素

	5.11　二维卷积
	5.12　超分重组
	5.13　交叉超分重组
	5.14　交叉降分重组
	5.15　张量拼接
	5.16　渗漏激活函数
	5.17　标准激活函数
	5.18　二维深度卷积
	5.19　二维整数卷积
	5.20　二维转置卷积
	5.21　张量填充
	5.22　张量裁剪
	5.23　张量取绝对值
	5.24　张量截断
	5.25　张量加和
	5.26　二维加权卷积
	5.27　二维残差卷积

	6　位流的语法和语义
	6.1　语法描述
	6.1.1　起始码
	6.1.2　图像位流定义
	6.1.3　图像头定义
	6.1.4　图像特征数据定义
	6.1.5　图像结构数据定义
	6.1.6　图像重建数据定义

	6.2　语义描述
	6.2.1　图像头语义描述
	6.2.2　图像特征数据语义描述
	6.2.3　图像结构数据语义描述
	6.2.4　图像重建数据语义描述

	7　解析过程
	7.1　通则
	7.2　无符号整数解析
	7.3　固定位宽符号解析
	7.4　ne(v)符号解析
	7.4.1　通则
	7.4.2　初始化
	7.4.3　z的解析
	7.4.4　y_residue的解析
	7.4.5　概率估计
	7.4.6　数值熵解析
	7.4.6.1　通则
	7.4.6.2　解析状态值检验
	7.4.6.3　熵解析跳过
	7.4.6.4　跳过熵解析的数据读取

	7.5　符号查表解析
	7.5.1　group_mask_value的解析

	8　解码过程
	8.1　通则
	8.2　解析图像位流
	8.3　解码图像特征数据
	8.3.1　通则
	8.3.2　特征张量解码
	8.3.2.1　通则
	8.3.2.2　反量化
	8.3.2.3　超先验张量超分
	8.3.2.4　特征张量预测补偿
	8.3.2.4.1　通则
	8.3.2.4.2　第0阶特征张量预测
	8.3.2.4.3　第1阶特征张量预测
	8.3.2.4.4　第2阶特征张量预测
	8.3.2.4.5　第3阶特征张量预测
	8.3.2.4.6　第4阶特征张量预测
	8.3.2.4.7　第5阶特征张量预测
	8.3.2.4.8　第6阶特征张量预测
	8.3.2.4.9　第7阶特征张量预测
	8.3.2.4.10　预测张量调整
	8.3.2.4.11　预测融合

	8.3.2.5　特征张量调制

	8.3.3　特征张量超分

	8.4　解码图像结构数据
	8.4.1　通则
	8.4.2　解码目标框

	8.5　解码图像重建数据

	附　录　A（规范性）伪起始码方法
	附　录　B（规范性）档次
	B.1　概述
	B.2　档次

	附　录　C（规范性）神经网络模型参数
	附　录　D（规范性）解析过程中使用的数据以及码表
	D.1　解析z[i][j][k]时使用的矩阵、列表和张量
	D.2　解析y_residue[i][j][k]时使用的矩阵和列表
	D.3　块掩膜码表

	附　录　E（资料性）特征适配

