ICS 19 020

T/GXDSL

M731

团

体

标

准

T/GXDSL 001—2025

量子通信网络设备接口技术规范

Technical Specifications for the Interfaces of Quantum Communication Network

Equipment

2025 - 3 - 7 发布

2025 - 3 - 7 实施

目 次

1	范围	. 1
2	规范性引用文件	. 1
3	术语和定义	. 1
4	连接方式	. 2
	4.1 基本要求	. 2
	4.2 交互流程	. 3
5	协议说明	. 5
	5.1 QKD 与 QKS 之间的应用接口交互协议说明	. 5
	5.2 QKS 与 APP 之间的输出接口交互协议说明	10
6	附则	16

前 言

本文件依据GB/T 1.1-2020 《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由广西产学研科学研究院提出。

本文件由广西电子商务企业联合会归口。

本文件起草单位:广西研科院高新技术有限公司,安徽问天量子科技股份有限公司,广西产学研科学研究院,中国科学技术大学,国防科技大学,西安交通大学,广西蓝脑科技有限公司,合肥量芯科技有限公司,合肥富地智飞科技有限公司,中国联通南宁市分公司,广西景灿通信科技有限公司,山东大学(乐陵)人工智能研究院,清华大学零一学院,西安蓝脑科技有限公司,成都锦城学院,西北农林科技大学,海南大学,重庆大学,西安欧亚学院,西北大学,西那瓦国际大学(泰国),西安理工大学,上海信昊信息科技有限公司,上海工程技术大学,广西科技大学,广西立新科技产业有限公司。

本文件主要起草人: 庄文斌, 郝鹏磊, 刘婧婧, 曹渊, 朱敏波, 朱进山, 韦新, 东晨, 陈世卿, 王建, 李征骥, 李三雁, 张志敏, 王博知, 韦博鲲, 段玉聪, 路建国, 宋永端, 杨猛, 赵闪光, 郑小伟, 李学平, 熊文阔, 龚才春, 赵国帅, 周伯韬, 周建伟, 李高健, 李奇, 包奇, 张健, 陶震, 朱惠英, 王钊锦, 李树衡, 蔡伟逸。

本文件为首次发布。

量子通信网络设备接口技术规范

1 范围

本标准规定了量子通信网络设备接口的通用技术要求,包括QKD与QKS之间的应用接口、QKS与APP 之间的输出接口的连接方式、协议说明。

本标准适用于量子密钥分发(QKD)设备、量子密钥管理设备(QKS)、量子密钥应用设备(APP)等核心组件的设计、研发、集成及部署,也可用于指导量子通信网络系统的检测。

2 规范性引用文件

下列文件中的条款通过本规范的引用而成为本规范的条款。凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本规范,然而,鼓励根据本规范达成协议的各方研究是否可使用这些的最新版本。凡是不注日期的引用文件,其最新版本适用于本规范。

DL/T 2399-2021 电力量子保密通信系统密钥交互接口技术规范

GB/T 15843. 2—2024 网络安全技术 实体鉴别 第2部分:采用鉴别式加密的机制(即将实施,预计实施日期: 2025-04-01)

GM/T 0006-2023 密码应用标识规范

GM/T 0050-2016 密码设备管理 设备管理技术规范

YD/T 4301-2023 量子保密通信网络架构

YD/T 4410.1-2023 量子密钥分发(QKD)网络Ak接口技术要求 第1部分:应用程序接口(API)

3 术语和定义

3.1 经典信道 Classical Channel

传输经典信号的信道。。[引用标准: YD/T 4301-2023, 3.1]

3.2 量子信道 Quantum Channel

用于传输量子信号的通信信道。。[引用标准: YD/T 4301-2023, 3.8]

3.3 量子密钥 Quantum Key

以量子态为信息载体,基于量子不可克隆、不可分割定理,通过量子信道与经典信道协商出的对称随机比特序列。[引用标准: DL/T 2399—2021, 3.4]

3.4 量子保密通信系统 Quantum Secure Communication System

基于量子密钥分发和密码技术实现安全通信的系统,系统主要包括量子密钥应用设备、量子密钥管理设备及量子密钥生成设备。[引用标准: DL/T 2399—2021, 3.7]

3.5 量子密钥生成设备 Quantum Key Generation Device

通过量子信道与经典信道协商生成量子密钥的设备。[引用标准: DL/T 2399-2021, 3.8]

3.6 量子密钥管理设备 Quantum Key Management Device

由量子密钥生成设备获取量子密钥,进行密钥管理,并向量子密钥应用设备提供量子密钥的设备。实际系统中,量子密钥管理设备通常可独立存在,也可与量子密钥生成设备集成。[引用标准: DL/T 2399—2021, 3.9]如QKS设备。

3.7 量子密钥应用设备 Quantum Key Application Device

应用量子密钥进行加解密或认证的设备。[引用标准: DL/T 2399-2021, 3.10]

4 连接方式

量子保密通信系统通常由量子密钥分发设备(QKD)、量子密钥管理设备(QKS)、量子密钥应用设备(APP)、量子密钥管控中心和量子网络管理系统组成。本规范描述QKD与QKS之间的应用接口和QKS与APP之间的输出接口。QKD与QKS之间通过网口连接,采用TCP长连接方式,端口号为5551;QKS与APP之间同样通过网口连接,采用TCP长连接方式,端口号为13579。这些接口在系统中的位置如下图所示。

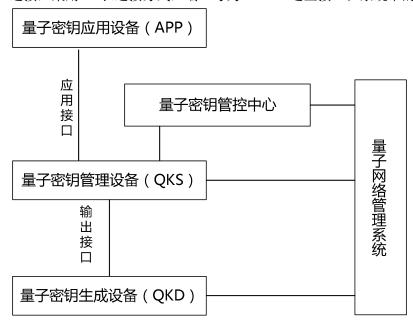


图 1 量子通信网络设备接口示意图

4.1 基本要求

在通用设计方面,本协议采用大端字节序,编码设计时考虑兼容不同平台、操作系统、硬件(含不同厂家密码卡、安全芯片)、软件算法,同时建议设备间时间同步(非必需)。在安全设计方面,要求两个实体设备之间进行身份认证,采用SM4_CBC和SM3_HMAC保证数据的机密性和完整性,其它说明如下:

- a) 鉴于量子保密通信网络的特殊性,本规范采用对称密钥进行实体间的身份认证,采用 GB/T 15843.2—2024《网络安全技术 实体鉴别 第2部分:采用鉴别式加密的机制》7.3.3节三次传递鉴别机制。
- b) 实体间若采用长连接方式,双方应建立并长期保持该连接,若采用短连接方式,单次数据发送后即断开连接,需要发送数据时重新启动连接。

- c) 认证密钥更新要求:认证密钥在实体双方进行身份认证时使用,相对来说使用次数小,加密信息量较少,更换周期长,一般可采用人工方式更新。
- d) 业务(会话)密钥更新要求:用于加密设备之间的通信数据,使用比较频繁,加密数据量大, 应及时进行更换,更新周期通常与业务需求相关,可自行定义。对于不能中断的业务密钥更新 时应无感更新。

4.2 交互流程

4.2.1 QKD与QKS之间的应用接口交互流程

QKD向QKS输出量子密钥,主要包含以下操作:设备入网、状态上报、会话创建、密钥推送、会话销毁、设备离网,示意图如下。

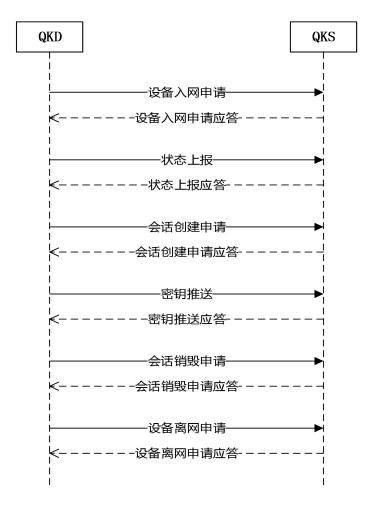


图 2 QKD 与 QKS 协议交互流程

如上图所示,展示了QKD与QKS间的交互流程,相关接口协议说明如下表。

表 1 QKD 与 QKS 交互接口协议列表

序号	名称	描述	物理连接	备注
1	设备入网	QKD 与 QKS 进行身份认证并建立数据加密传输通道	网口	必选
2	状态上报	QKD 定时向 QKS 上报状态,可作为心跳使用	网口	推荐

3	会话创建	QKD 以链路为单位与 QKS 建立量子密钥推送的服务会话,一台设备可以有多个服务会话	网口	必选
4	密钥推送	QKD 一链路为单位向 QKS 推送密钥,通常一个服务会话会包含多次推送	网口	必选
5	会话销毁	QKD 销毁与 QKS 间的指定链路会话	网口	推荐
6	6 设备离网 QKD 断开与 QKS 间的连接,并销毁连接对象		网口	必选

4.2.2 QKS与APP之间的输出接口交互流程

APP向QKS获取量子密钥,主要包含以下操作:设备入网、状态上报、量子密钥服务申请、量子密钥申请、量子密钥服务撤销、设备离网,示意图如下。

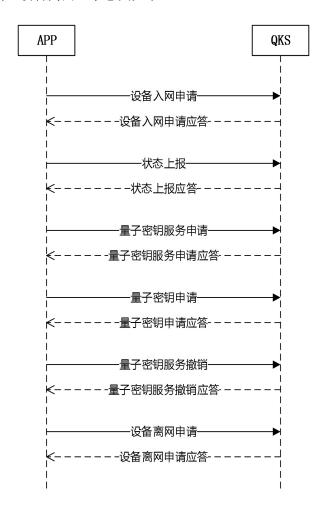


图 3 APP与 QKS 协议交互流程

如上图所示,展示了APP与QKS间的交互流程,相关接口协议说明如下表。

表 2 APP与 QKS 交互接口协议列表

序号	名称	接口名称	描述	物理连接	备注
1	设备入网	qcf_app_login	APP 与 QKS 进行身份认证并建立数据 加密传输通道	网口	必选

2	状态上报	qcf_app_upload_status	APP 定时向 QKS 上报状态,可作为心 跳使用	网口	推荐
3	量子密钥 服务申请	qcf_app_open_session	APP 与 QKS 建立量子密钥申请服务的 会话,一台设备可以有多个服务会话	网口	必选
4	量子密钥 申请	qcf_app_get_key	APP 向 QKS 申请密钥,通常一个服务 会话会包含多次申请	网口	必选
5	量子密钥 服务撤销	qcf_app_close_session	APP 销毁与 QKS 间的指定服务会话	网口	推荐
6	设备离网	qcf_app_logout	APP 断开与 QKS 间的连接,并销毁连接对象	网口	必选

5 协议说明

5.1 QKD 与 QKS 之间的应用接口交互协议说明

5.1.1 协议格式

通信协议报文格式包含消息头、消息体和消息尾。

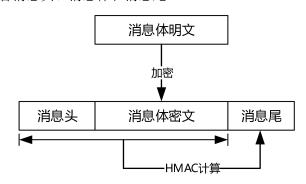


图 4 数据格式及加密机制

如上图所示,消息体明文数据进行SM4加密后得到消息体密文,消息头与消息体密文组合后共同计算HMAC得到校验值,校验值填充至消息尾,解密为上述过程的逆操作。

a) 消息头

消息头主要定义了报文的基本信息,包括协议标识、版本号、消息ID等,如下表所示。

名称	长度(字节)	说明
协议标识	4	唯一标识一个协议,主要用于区分协议,固定为 0xA1A2A3A4
版本号	1	0x01
		高 4 位表示加解密算法, 低四位表示 MAC 算法, 当该值为 0 时表示不
安全模式	1	加密并采用 SM3 作为 MAC 算法, 当该值为 0x11 时表示采用
		SM4_CBC+SM4_HMAC 算法套件
保留	2	保留, 置零 0x00
接收方ID	4	消息接收方设备 ID

表 3 消息头格式定义

发送方ID	4	消息发送方设备 ID
消息ID	8	从1递增,重建清零
		0x00A1: 设备入网
		0x00A2: 状态上报
】 功能标识	2	0x00A3: 会话创建
切能协以	2	0x00A4: 密钥推送
		0x00A5: 会话销毁
		0x00A6: 设备离网
消息体长度	4	消息体长度,若加密则为加密后的消息体长度

a) 消息尾

消息尾主要定义了报文的校验信息,包含校验值长度、校验值,如下表所示。

表 4 消息尾格式定义

名称	长度 (字节)	说明
校验值长度	4	校验值长度
校验值	N	根据消息头和消息体计算得到的 HMAC 校验值

b) 消息体

消息体主要定义了报文的具体内容用于承载业务数据,业务不同,承载的数据也不同,在数据传输中,消息体需进行加密保护。

在采用对称密钥加密时通常会涉及IV和数据填充,对其规定如下:

- 1) 加密 IV 通过计算当前数据包消息头的 MAC 值获得,取前 16 字节。由于消息 ID 不同,每一包的 IV 也将不同。
- 2) 加密填充方法参考 GM/T 0050—2016《密码设备管理 设备管理技术规范》标准 8.1 节描述,采用第一个字节为 0x80,其后为 0x00,填充到分组长度的整数倍(消息头明文长度为分组长度整数倍时也应进行填充)。

5.1.2 设备入网

设备入网是QKD与QKS之间、QKS与APP之间建立安全传输通道的过程,其主要包含身份认证和加密通道的建立。通常QKD或APP启动并完成配置后,即开始自动向QKS发起设备入网申请,若申请失败,则再次申请(申请时间间隔可配置,默认为30秒)。

5.1.2.1 认证流程

本协议规定身份认证采用GB/T 15843.2—2024《网络安全技术 实体鉴别 第2部分:采用鉴别式加密的机制》7.3.3节三次传递鉴别机制。

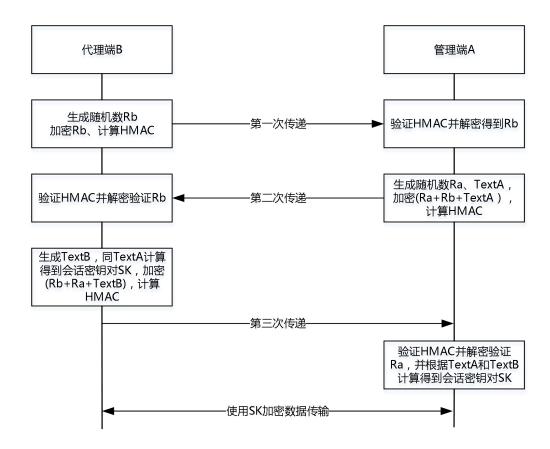


图 5 基于对称密钥的安全通道协议及三次传递鉴别

基于对称密钥的身份认证如图所示,通信双方预置对称密钥,并将对称密钥分成2个部分,每个部分2组密钥。第1部分是A到B方向, $\mathbf{K}_{AB}^{^{1}}$ 用于加密PDU消息敏感数据, $\mathbf{K}_{AB}^{^{2}}$ 用于计算安全通道整个数据格式的HMAC,第2部分是B到A方向, $\mathbf{K}_{BA}^{^{1}}$ 用于加密PDU消息敏感数据, $\mathbf{K}_{BA}^{^{2}}$ 用于计算安全通道整个数据格式的HMAC。

- a) 代理端 B 产生成随机数 R_b ,使用 K_{BA}^1 加密 R_b , K_{BA}^2 计算 HMAC, 组织数据发送至管理端 A;
- b) 管理端 A 使用 \mathbf{K}_{AB}^2 验证报文完整性, \mathbf{K}_{AB}^1 解密得到 \mathbf{R}_b ,之后生成随机数 \mathbf{R}_a 和 TextA,使用 \mathbf{K}_{AB}^1 密 ($\mathbf{R}_b\mathbf{R}_a$ TextA), \mathbf{K}_{AB}^2 计算 HMAC,组织数据发送至代理端 B;
- c) 代理端 B 使用 K_{AB}^2 验证报文完整性, K_{AB}^1 解密得到 (R_aR_b TextA),验证 R_b 一致性后生成 TextB,同时使用 TextA 和 TextB 生成会话密钥对 SK,之后使用 K_{BA}^1 加密 (R_bR_a TextB), K_{BA}^2 计算 HMAC,组织数据发送至管理端 A,;
- d) 管理端 A 使用 K_{BA}^2 验证报文完整性, K_{BA}^1 解密得到 (R_bR_a TextB), 验证 R_a 一致性后,使用 TextA 和 TextB 生成会话密钥对 SK。
- 注:关于TextA包含16字节随机数A1+16字节随机数A2,TextB包含16字节随机数B1+16字节随机数B2,会话密钥SK由数据加密密钥和HMAC计算密钥组成,数据加密密钥为($A1 \oplus B1$),HMAC计算密钥为($A2 \oplus B2$)。

5.1.2.2 消息格式

入网协商第一帧消息体格式如下表。

表 5 入网协商第一帧消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-入网协商第一帧
设备标识	4	QKD设备ID
协商数据B的长度	2	协商数据B的长度,暂固定为32
协商数据B	N	B端产生的协商随机数R。

入网协商第二帧消息体格式如下表。

表 6 入网协商第二帧消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-入网协商第二帧
协商数据A的长度	2	协商数据A的长度,本协议固定为32
协商数据A	N	A端产生的协商随机数R。
协商数据B的长度	2	协商数据B的长度,本协议固定为32
协商数据B	N	B端的协商随机数R。
附加数据长度	2	协商所需的附加数据长度,本协议固定为32
[V] 1: 10 XV 1: E	N	附加数据,用于产生会话密钥对,前16字节作为数据传输加密密钥分
附加数据		量,后16字节作为HMAC计算密钥分量

入网协商第三帧消息体格式如下表。

表7 入网协商第三帧消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x03-入网协商第三帧
协商数据B的长度	2	协商数据B的长度,同入网协商第一帧
协商数据B	N	B端的协商随机数R。
协商数据A的长度	2	协商数据A的长度,同入网协商第二帧
协商数据A	N	A端的协商随机数R。
附加数据长度	2	协商所需的附加数据长度,同入网协商第二帧
[V] 1: 10 X/r 1: E	N.	附加数据,用于产生会话密钥对,前16字节作为数据传输加密密钥分
附加数据	N	量,后16字节作为HMAC计算密钥分量

当协商流程出错时,检测到错误的一方向另一方发送协商通告。入网协商通告帧消息体格式如下表。

表 8 入网协商通告帧消息体格式

名称	长度 (字节)	说明
消息类型	1	0x04-入网协商通告帧
		0x01-入网协商第一帧应答通告
通告类型	1	0x02-入网协商第二帧应答通告
		0x03-入网协商第三帧应答通告
协商结果	4	0-成功, 非0-错误(待定义)
描述长度	2	通告描述长度,长度范围0-255,若长度为0,无后续字段
描述	N	通告描述

5.1.3 状态上报

状态上报可以作为心跳使用,每隔30s上报一次,在特殊要求下(如不关心设备状态的应用场景),可不进行状态上报。当QKD连续3次未收到应答,则主动断开与QKS之间的连接;当QKS在2分钟内没有收到QKD的状态上报信息,则主动断开与QKD之间的连接。具体格式如下:

表 9 状态上报消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-状态上报
工作状态	4	0-正常,非0-异常

表 10 状态上报应答消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-状态上报应答
应答码	4	0x00

5.1.4 会话创建

当设备入网成功后,QKD即可向QKS进行会话创建申请,此消息的主要作用是QKS对QKD的策略和申请信息进行验证。

表 11 会话创建消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-会话创建
策略标识	4	本次会话的QKD策略ID
最大密钥块数	4	单次量子密钥推送的最大密钥块数,默认为1024
超时时间	4	单次量子密钥推送的超时时间,以毫秒为单位,默认为3000ms

表 12 会话创建应答消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-会话创建应答
策略标识	4	QKD策略ID
结果	4	0-成功,非0-失败

5.1.5 密钥推送

表 13 密钥推送消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-密钥推送
策略标识	4	QKD策略ID
密钥块个数	2	N个密钥块(N=1~1024,可配置)
密钥块数据	N× (4+1024)	前4字节为密钥编号,策略标识和密钥编号结合唯一标识一个密钥,最
		后1024字节为密钥数据(密钥编号掉电保存)

表 14 密钥推送应答消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-密钥推送应答
策略标识	4	QKD策略ID
结果	4	0-成功,非0-失败

5.1.6 会话销毁

当QKD端无需向QKS推送量子密钥时,QKD应销毁和QKS的服务会话,具体格式如下。

表 15 会话销毁消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-会话销毁
策略标识	4	本次待销毁会话的QKD策略ID

表 16 会话销毁应答消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-会话销毁应答
策略标识	4	本次销毁会话的QKD策略ID
结果	4	0-成功,非0-失败

5.1.7 设备离网

当QKD需要离网时,应向QKS发送设备离网请求,具体格式如下:

表 17 设备离网消息体格式(QKD->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-设备离网
设备标识	4	QKD设备ID

表 18 设备离网应答消息体格式(QKS->QKD)

名称	长度 (字节)	说明
消息类型	1	0x02-设备离网应答
结果	4	0-成功,非0-失败

5.2 QKS 与 APP 之间的输出接口交互协议说明

5.2.1 协议格式

通信协议报文格式包含消息头、消息体和消息尾。

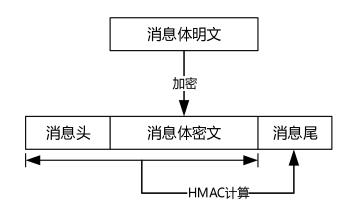


图 6 数据格式及加密机制

如上图所示,消息体明文数据进行SM4加密后得到消息体密文,消息头与消息体密文组合后共同计算HMAC得到校验值,校验值填充至消息尾,解密为上述过程的逆操作。

c) 消息头

消息头主要定义了报文的基本信息,包括协议标识、版本号、消息ID等,如下表所示。

名称	长度 (字节)	说明
协议标识	4	唯一标识一个协议,固定为 0xA1B2C3D4
版本号	1	0x01
安全模式	1	0x01-表示采用 SM4-SM3 算法
保留	2	保留,置零 0x00
接收方ID	4	消息接收方设备 ID
发送方ID	4	消息发送方设备 ID
消息ID	8	从1递增,重建清零
	2	0x00B1: 设备入网
		0x00B2: 状态上报
功能标识		0x00B3: 量子密钥服务申请
切 肥 你 你		0x00B4: 量子密钥申请
		0x00B5: 量子密钥服务撤销
		0x00B6: 设备离网
消息体长度	4	消息体长度,若加密则为加密后的消息体长度

表 19 消息头格式定义

d) 消息尾

消息尾主要定义了报文的校验信息,包含校验值长度、校验值,如下表所示。

表 20 消息尾格式定义

名称	长度(字节)	说明
校验值长度	4	校验值长度
+÷ 1/4 /±	N	根据消息头和消息体计算得到的 HMAC 校验值,可根据安全模式中定义
校验值	N	的 MAC 算法获知其长度

e) 消息体

消息体主要定义了报文的具体内容用于承载业务数据,业务不同,承载的数据也不同,在数据传输中,消息体需进行加密保护。

在采用对称密钥加密时通常会涉及IV和数据填充,对其规定如下:

- 1) IV 通过计算当前数据包消息头的 MAC 值(默认使用 SM3 算法,取后 16 字节)获得,由于消息 ID 不同,每一包的 IV 也将不同。
- 2) 加密填充方法参考 GM/T 0006—2023《密码应用标识规范》标准 8.1 节描述,采用第一个字节为 0x80,其后为 0x00,填充到分组长度的整数倍(明文长度为分组长度整数倍时也应进行填充)。

5.2.2 设备入网

设备入网是APP与QKS之间建立安全传输通道的过程,其主要包含身份认证和加密通道的建立。通常APP启动并完成配置后,即开始自动向QKS发起设备入网申请,若申请失败,则再次申请(申请时间间隔可配置,默认为30秒)。

5. 2. 2. 1 认证流程

本协议规定身份认证采用GB/T 15843.2—2024《网络安全技术 实体鉴别 第2部分:采用鉴别式加密的机制》7.3.3节三次传递鉴别机制。

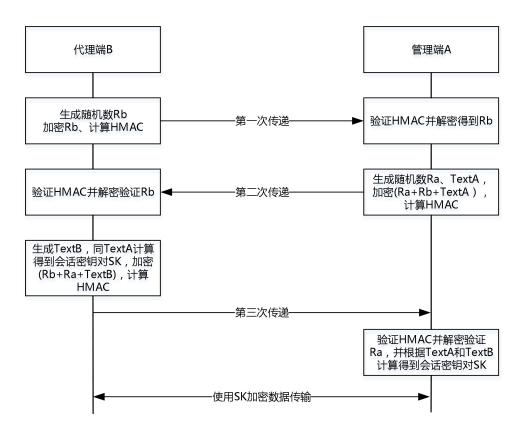


图 7 基于对称密钥的安全通道协议及三次传递鉴别

基于对称密钥的身份认证如图所示,通信双方预置对称密钥(加解密密钥为单向密钥),并将对称密钥分成2个部分,每个部分2组密钥。第1部分是A到B方向, \mathbf{K}_{AB}^{1} 用于加密PDU消息敏感数据, \mathbf{K}_{AB}^{2} 用于

计算安全通道整个数据格式的HMAC;第2部分是B到A方向, K_{BA}^{1} 用于加密PDU消息敏感数据, K_{BA}^{2} 用于计算安全通道整个数据格式的HMAC。

- e) 代理端 B 产生成随机数 R_b , 使用 K_B 加密 R_b K_B 计算 HMAC, 组织数据发送至管理端 A;
- f) 管理端 A 使用 \mathbf{K}_{BA}^2 验证报文完整性, \mathbf{K}_{BA}^1 解密得到 \mathbf{R}_b ,之后生成随机数 \mathbf{R}_a 和 TextA,使用 \mathbf{K}_{AB}^1 加密 ($\mathbf{R}_b\mathbf{R}_a$ TextA), \mathbf{K}_{AB}^2 计算 HMAC,组织数据发送至代理端 B;
- g) 代理端 B 使用 K_{AB}^2 验证报文完整性, K_{AB}^1 解密得到 (R_aR_b TextA),验证 R_b —致性后生成 TextB,同时使用 TextA 和 TextB 生成会话密钥对 SK,之后使用 K_{BA}^1 加密 (R_bR_a TextB), K_{BA}^2 计算 HMAC,组织数据发送至管理端 A,:
- h) 管理端 A 使用 K_{BA}^2 验证报文完整性, K_{BA}^1 解密得到 (R_bR_a TextB),验证 R_a 一致性后,使用 TextA 和 TextB 生成会话密钥对 SK。
- 注:关于TextA包含16字节随机数A1+16字节随机数A2,TextB包含16字节随机数B1+16字节随机数B2,会话密钥SK由数据加密密钥和HMAC计算密钥组成,数据加密密钥为(A1⊕B1),HMAC计算密钥为(A2⊕B2)。

5.2.2.2 消息格式

入网协商第一帧消息体格式如下表。

表 21 入网协商第一帧消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-入网协商第一帧
设备标识	4	APP设备ID
协商数据B的长度	2	协商数据B的长度, 暂固定为32
协商数据B	N	B端产生的协商随机数R。

入网协商第二帧消息体格式如下表。

表 22 入网协商第二帧消息体格式(QKS->APP)

名称	长度(字节)	说明
消息类型	1	0x02-入网协商第二帧
协商数据A的长度	2	协商数据A的长度,本协议固定为32
协商数据A	N	A端产生的协商随机数R。
协商数据B的长度	2	协商数据B的长度,本协议固定为32
协商数据B	N	B端的协商随机数R。
附加数据长度	2	协商所需的附加数据长度,本协议固定为32
7/1 to 3/2 to	N	附加数据,用于产生会话密钥对,前16字节作为数据传输加密密钥分
附加数据	N	量,后16字节作为HMAC计算密钥分量

入网协商第三帧消息体格式如下表。

表 23 入网协商第三帧消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x03-入网协商第三帧
协商数据B的长度	2	协商数据B的长度,同入网协商第一帧

协商数据B	N	B端的协商随机数R _b
协商数据A的长度	2	协商数据A的长度,同入网协商第二帧
协商数据A	N	A端的协商随机数R _a
附加数据长度	2	协商所需的附加数据长度,同入网协商第二帧
附加数据	N	附加数据,用于产生会话密钥对,前16字节作为数据传输加密密钥分
		量,后16字节作为HMAC计算密钥分量

当协商流程出错时,检测到错误的一方向另一方发送协商通告,通告数据帧消息头安全模式字段值为0x00。入网协商通告帧消息体格式如下表。

名称	长度 (字节)	说明
消息类型	1	0x04-入网协商通告帧
		0x01-入网协商第一帧应答通告
通告类型	1	0x02-入网协商第二帧应答通告
		0x03-入网协商第三帧应答通告
协商结果	2	0-成功, 非0-错误(待定义)
描述长度	2	通告描述长度,长度范围0-255,若长度为0,无后续字段
描述	N	通告描述

表 24 入网协商通告帧消息体格式

5.2.3 状态上报

状态上报可以作为心跳使用,每隔30s上报一次,在特殊要求下(如不关心设备状态的应用场景),可不进行状态上报(不上报时,QKS在APP登录后视其始终在线)。当APP连续3次未收到应答,则主动断开与QKS之间的连接;当QKS在2分钟内没有收到APP的状态上报信息,则主动断开与APP之间的连接;若APP不进行状态上报,QKS则认为APP始终处于连接状态。具体格式如下:

名称	长度 (字节)	说明
消息类型	1	0x01-状态上报
工作状态	4	0-正常,非0-异常
主机版本	4	例如版本号V1.0.0.2,表示为0x01 0x00 0x00 0x02
CPU使用率	4	百分比扩大100倍后十进制展示,如:56.23%表示为5623
内存使用率	4	百分比扩大100倍后十进制展示,如: 56.23%表示为5623

表 25 状态上报消息体格式(APP->QKS)

表 26 状态上报应答消息体格式(QKS->APP)

名称	长度 (字节)	说明
消息类型	1	0x02-状态上报应答
应答码	1	0x00

5.2.4 量子密钥服务申请

当设备入网成功后,APP即可向量子密钥服务申请,此消息的主要作用是QKS对APP的策略和申请信息进行验证。

表 27 量子密钥服务申请消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-量子密钥服务申请
策略ID	4	量子密钥服务策略标识
读取模式	1	0-双端请求方式,1-单端请求单端推送方式,固定为0
申请次数	4	密钥申请总次数,当达到该次数时,撤销量子密钥服务申请
密钥长度	4	单次量子密钥申请需要的密钥长度,范围16B-1MB,16字节整数倍
超时时间	4	单次量子密钥申请的超时时间,以秒为单位,默认为3s

表 28 量子密钥服务申请应答消息体格式(QKS->APP)

名称	长度 (字节)	说明
消息类型	1	0x02-量子密钥服务申请应答
策略标识	4	量子密钥服务策略唯一标识
结果	1	0-成功,非0-失败

5.2.5 量子密钥申请

表 29 量子密钥申请消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-量子密钥申请
策略标识	4	量子密钥服务策略唯一标识
密钥标识	4	密钥的唯一标识,0-由QKS自动分配,非0-获取指定标识的密钥

表 30 量子密钥申请应答消息体格式(QKS->APP)

名称	长度 (字节)	说明
消息类型	1	0x02-量子密钥申请应答
策略标识	4	量子密钥服务策略唯一标识
结果	1	0-成功,非0-失败,失败无后续字段
密钥标识	4	获取密钥的唯一标识
密钥数据	N	同量子密钥服务申请中密钥长度大小

5.2.6 量子密钥服务撤销

当APP端完成量子密钥服务申请所需的密钥量或无需再获取量子密钥时,APP应向QKS撤销量子密钥服务申请,具体格式如下。

表 31 量子密钥服务撤销消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-量子密钥服务撤销申请
策略标识	4	待撤销的密钥服务策略标识

表 32 量子密钥服务撤销应答消息体格式(QKS->APP)

名称	长度 (字节)	说明
消息类型	1	0x02-量子密钥服务撤销申请应答
策略标识	4	撤销的密钥服务策略标识
结果	1	0-成功,非0-失败

5.2.7 设备离网

当APP需要离网时,应向QKS发送设备离网请求,具体格式如下:

表 33 设备离网消息体格式(APP->QKS)

名称	长度 (字节)	说明
消息类型	1	0x01-设备离网
设备标识	4	APP设备ID

表 34 设备离网应答消息体格式(QKS->APP)

名称	长度 (字节)	说明
消息类型	1	0x02-设备离网应答
结果	1	0-成功,非0-失败

6 附则

本标准应根据量子通信网络设备接口技术的发展和应用情况,定期进行修订和更新,确保标准的先进性和适用性。

本标准自发布之日起实施。本标准由归口广西电子商务企业联合会。