T/ZASDI 0002-2023
[bookmark: mbookmark1][bookmark: _Toc135660911][bookmark: _Toc135660995][bookmark: _Toc135661545][bookmark: mbookmark2] T/ZASDI
团 体 标 准
 T/ZASDI 0002-2023

军工软件Python语言编程指南

2024-09-24发布 2024-10-01实施

中关村科创智慧军工产业技术创新战略联盟发布
目 次
[bookmark: _Toc135660912][bookmark: _Toc135660996]前言	III
军用软件Python编程指南	1
1 范围	1
2 规范性引用文件	1
3 总则	1
4 术语和定义	2
4.1 规则等级	2
4.2 规则分类	2
5 Python编码规范	2
5.1 错误类编程规范	2
R-1-1 禁止访问未定义的变量	2
R-1-2 禁止使用未赋值的局部变量	2
R-1-3 禁止使用不可哈希的对象作为dict的键或set的成员	3
R-1-4 用于赋值的函数调用不应仅返回None	3
R-1-5 禁止关键字参数与形参名不匹配	4
R-1-6 用于赋值的函数调用不应没有返回任何值	4
R-1-7 禁止使用与当前类不相关的super()调用	5
R-1-8 except子句的顺序必须从具体到通用	6
R-1-9 禁止__slots__中的值与类变量、属性或方法存在冲突	6
R-1-10 禁止访问未被赋值的实例成员	7
R-1-11 在局部作用域中使用全局变量必须添加global声明	8
R-1-12 禁止在循环外部使用循环变量	8
R-1-13 禁止将变量同时声明为nonlocal和global	9
R-1-14 禁止使用C语言风格的运算符++或--	10
R-1-15 函数、类或方法不应被重复定义	10
5.2 警告类编程规范	11
R-2-1 打开文件时应当显式指定编码	11
R-2-2 不应出现未被使用的参数	11
R-2-3 进行格式字符串操作时不应出现未被使用的参数	12
R-2-4 不应出现未被使用的导入模块	12
R-2-5 不应出现未被使用的变量	12
R-2-6 禁止重写的方法与基类不匹配	13
R-2-7 禁止抛出NotImplemented	14
R-2-8 抽象方法在具体类中必须被重写	14
R-2-9 方法的参数数量与实现的接口或重写的方法中的数量必须相同	15
R-2-10 typing.final修饰的方法不应被重写	17
R-2-11 禁止方法参数的名称与实现接口或重写方法中的名称不同	18
R-2-12 禁止将字符串常量作为assert的第一个参数	19
R-2-13 禁止对元组进行assert操作	19
R-2-14 禁止出现缩进错误	20
R-2-15 捕捉多个异常时，异常捕获表达式中不应使用or	20
A-2-1 父类__init__方法应在派生类中被调用	20
A-2-2 应显示设置子进程运行检查	21
A-2-3 被typing.final修饰的类禁止被子类化	22
A-2-4 避免方法的签名与实现接口或重写的方法不同	22
A-2-5 避免变量为自身赋值	23
A-2-6 避免重复导入模块	23
A-2-7 没有返回值的return语句应显示地声明为return None	24
A-2-8 避免变量名遮蔽外部作用域或异常处理程序中的定义	24
A-2-9 避免变量在同一赋值表达式中被重复声明	25
A-2-10 变量或函数不应重写内置函数	25
A-2-11 不建议使用exec语句	25
A-2-12 避免使用eval函数	26
A-2-13 避免字典的赋值表达式中出现重复的键	26
A-2-14 避免出现重复的异常捕获	27
A-2-15 避免访问受保护的成员	27
A-2-16 不应存在死代码	28
A-2-17 谨慎在finally语句块中使用break或return	28
A-2-18 避免使用冲突的文件操作模式	29
A-2-19 避免使用空的except语句	30
A-2-20 避免在闭包中使用循环中定义的变量	30
A-2-21 谨慎与可调用对象进行比较	31
A-2-22 避免使用可变对象作为默认参数值	32
A-2-23 避免调用非直接父类的__init__方法	32
A-2-24 避免使用C语言风格的分号	33
5.3 约定类编程规范	33
R-3-1 不应出现实参与形参名称完全相同但顺序不一致的情况	34
R-3-2 禁止导入语句前出现用户代码	35
R-3-3 遍历字典成员或键时，建议直接遍历字典本身	35
A-3-1 类的__slots__应是可迭代对象	35
A-3-2 避免在布尔表达式中包含不必要的not	36
5.4 重构类编程规范	36
A-4-1 避免使用导入包的子模块的名称作为别名	36
A-4-2 不应为属性定义参数	36
A-4-3 避免在布尔表达式中包含冗余的条件	37
A-4-4 避免对象与自身进行比较	37
A-4-5 建议使用sys.exit函数	38
A-4-6 建议使用with块替换分配资源的赋值或调用	38
A-4-7 避免使用is进行对象和字面值的比较	39
6 评价	39
A.1 编码标准中的强制规则	41
A.2 编码标准中的建议规则	42

T/ZASDI 0002-2023

1

[bookmark: _Toc1927051424][bookmark: _Toc186319334]前言
本文件的附件A为资料性附录。
本文件由中关村科创智慧军工产业技术创新战略联盟提出并归口。
本文件起草单位：中关村科创智慧军工产业技术创新战略联盟、北京工程控制研究所、北京轩宇信息技术有限公司、北京计算机技术及应用研究所、中国兵器工业信息中心、中国核电工程公司、北京星航机电装备有限公司、中国船舶集团第七一六研究所、武汉第二船舶设计研究所、中国电子科技集团第十四研究所、中国航空发动机研究院信息中心、北京赛西科技有限责任公司。
本文件主要起草人：吴一帆、江云松、赵越、陈睿、高栋栋、贾春鹏、冯大成、赵甫、何昀锋、王宇龙、毛喜道、刘昌阳、余晓江、吴伟杰、荆巍巍、赵永宣、郝文建。

[bookmark: _Toc135660997][bookmark: _Toc1342317805][bookmark: _Toc135660913][bookmark: _Toc1752402761][bookmark: _Toc135664516][bookmark: _Toc135811696][bookmark: _Toc437889212][bookmark: _Toc135660914][bookmark: _Toc135660998][bookmark: mbookmark4]军工软件Python编程指南
[bookmark: _Toc177527815][bookmark: _Toc2042469169]范围
本文件规定了使用Python2、Python3编程语言进行安全、规范编码的规则。
本文件适用于Python2、Python3语言编写的军用基础软件，特别是军用安全关键系统基础软件，其它军用软件也可参照执行。
每条规则都包含标识、标题、规则说明、违规的代码示例和合规的代码示例。标识是规则的唯一助记符，标题是对规则的简明但有时不精确的描述。规则说明指定了规则的规范性要求。违规的代码示例是构成违反规则的代码示例。随附的合规的代码示例展示了不违反此编码标准中的规则或任何其他规则的等效代码。
[bookmark: _Toc253226088][bookmark: _Toc135660999][bookmark: _Toc135660915][bookmark: _Toc855201022]规范性引用文件
下列文件中的有关条款通过引用而成为本标准的条款。凡注日期或版次的引用文件，其后的任何修改单(不包括勘误的内容)或修订版本都不适用于本标准，但提倡使用本标准的各方探讨使用其最新版本的可能性。凡不注日期或版次的引用文件，其最新版本适用于本标准。
GB/T38674-2020 信息安全技术应用软件安全编程指南
ISO/IEC/IEEE 24765:2017 Systems and software engineering — Vocabulary
ISO/IEC 26514:2008 Systems and software engineering — Requirements for designers and developers of user documentation
[bookmark: _Toc255527383][bookmark: _Toc135660916][bookmark: _Toc135661000][bookmark: _Toc1805756309]总则
该编码标准由强制规则（requried rule）和建议规则（advisory rule）组成。强制规则旨在为代码提供规范性要求，违反强制规则通常表明代码中存在缺陷；建议规则旨在提供指导，当遵循这些指导时，应该可以提高软件系统的安全性、可靠性和代码的可读性、可维护性。但是，违反建议规则并不一定表明代码中存在缺陷。强制规则和建议规则统称为指南。
强制规则必须满足以下条件：
1 违反该准则可能会导致缺陷，从而对系统的安全性、可靠性或安全性产生不利影响，例如，引入可能导致可利用漏洞的安全缺陷。
2 该指南不依赖于源代码注释或假设。
3 可以通过自动分析（静态或动态）、形式方法或人工审查技术来确定是否符合指南。
建议规则是提高代码质量的建议。当满足以下所有条件时，指南被定义为建议：
1 指南的应用可能会提高软件系统的安全性、可靠性或安全性。
2 无法满足将指南视为规则所必需的一项或多项要求。
[bookmark: _Toc135661001][bookmark: _Toc135660917][bookmark: _Toc1828915728][bookmark: _Toc1107385959]术语和定义
下列术语和定义适用于本文件。
[bookmark: _Toc1653200985][bookmark: _Toc1742528011][bookmark: _Toc135661002][bookmark: _Toc135660918]规则等级
[bookmark: _Toc135660919][bookmark: _Toc135661003]强制规则（required rule）：软件编程中强制要求的编码规则，此类规则使用字母R标识。
建议规则（advisory rule）：软件编程中推荐参照执行的编码准则，此类规则使用字母A标识。
[bookmark: _Toc1433786738][bookmark: _Toc1205530009]规则分类
错误（Error）：此类规则描述程序错误，通常违反规则会导致计算、观察值与真实、理论正确值不符，此类规则均为强制类规则。
警告（Warning）：此类规则指出执行某些操作可能会导致严重或危险的后果。
约定（convention）：此类规则描述应该被广泛接受和遵循的标准或约定。
重构（Refactor）：此类规则为重构代码建议，遵守此类规则可以改善质量属性、方便未来扩展或适应性，遵循此类规则不会改变代码行为，此类规则均为建议类规则。
[bookmark: _Toc135661004][bookmark: _Toc135660920][bookmark: _Toc1982135465][bookmark: _Toc739702579][bookmark: _Hlk129256317]Python编码规范
[bookmark: _Toc1984427991][bookmark: _Toc398412770]错误类编程规范
[bookmark: _Toc269414044][bookmark: _Toc135661011][bookmark: _Toc135661006][bookmark: _Hlk135129095]R-1-1 禁止访问未定义的变量
规则说明：访问未定义的变量会引发NameError。规则在检测到这种行为时报出违反。
违规代码示例：在下述代码示例中，程序员使用的number变量未定义。
print(number + 2) # 违背，试图访问未定义的变量
合规代码示例：定义number变量后即可使用：
number = 3
print(number + 2)
[bookmark: _Toc135661007][bookmark: _Toc1146309632]R-1-2 禁止使用未赋值的局部变量
规则说明：错误通常是由于对python中的变量作用域和名称解析规则理解不足导致。如果一个变量在函数内部被赋值，那么它将被视为局部变量，没有对它赋值就使用会导致UnboundLocalError。此规则在评估except/finally块时，会假定try块中的赋值没有发生。在评估块外的语句时，会假定except块中的赋值未发生，除非关联的try块包含return语句。尽管真正执行时情况未必如此。
违规代码示例：在下述代码示例中，局部变量x使用前未赋值。
x = 10
def foo():
 x = x + 1 # 违背
foo()
合规代码示例：对变量应先赋值后使用。
def foo():
x = 10
x = x + 1
foo()
[bookmark: _Toc950187787][bookmark: _Toc135661022][bookmark: _Toc135661023]R-1-3 禁止使用不可哈希的对象作为dict的键或set的成员
规则说明：在Python中，可哈希的对象一般有元组、字符串、整数和布尔值，不可哈希的对象一般有列表和字典。dict的键或set的成员必须是可哈希的对象，否则会导致TypeError。
违规代码示例：试图使用列表作为字典的键（列表是不可哈希的）。
Print the number of apples:
print({"apple": 42}[["apple"]]) # 违背，dict键不可哈希
合规代码示例：使用一个字符串作为键来检索值。
Print the number of apples:
print({"apple": 42}["apple"])
[bookmark: _Toc1117737017][bookmark: _Toc135661029][bookmark: _Toc135661017]R-1-4 用于赋值的函数调用不应仅返回None
规则说明：当使用函数调用的返回值进行赋值时，函数不应仅返回None。
违规代码示例：在下述代码示例中，定义的函数只会返回None。
def function():
 return None
f = function() # 违背，推断的函数返回的是None
合规代码示例：
def function():
 return None
f = function() if function() else 1
[bookmark: _Toc135661016][bookmark: _Toc1766584410]R-1-5 禁止关键字参数与形参名不匹配
规则说明：若函数调用时传递的关键字参数与任何形参名称不匹配，会引发TypeError。
违规代码示例：没有与关键字z对应的形参：
def print_coordinates(x=0, y=0):
 print(f"{x=}, {y=}")
print_coordinates(x=1, y=2, z=3) # 违背，不对应的函数参数名称
合规代码示例：传递正确的关键字参数：
def print_coordinates(x=0, y=0):
 print(f"{x=}, {y=}")

print_coordinates(x=1, y=2)
[bookmark: _Toc2022759095][bookmark: _Toc135661030]R-1-6 用于赋值的函数调用不应没有返回任何值
规则说明：当使用函数调用的返回值进行赋值时，函数不应没有返回任何值。
违规代码示例：在下述代码示例中，add函数没有返回值，但是在调用该函数时将其赋值给了变量value。这意味着value变量将被分配为None，因为没有返回值被传递给它。
def add(x, y):
 print(x + y)
value = add(10, 10) # 违背，推断出的函数没有返回任何值
合规代码示例：给add函数设置返回值。
def add(x, y):
 return x + y
value = add(10, 10)
[bookmark: _Toc1845977655][bookmark: _Toc135661035]R-1-7 禁止使用与当前类不相关的super()调用
规则说明：在使用super()函数时，第一个参数应该是其父类。如果传入的是其他类，则可能会导致非预期的结果。
违规代码示例：在下述代码示例中，调用super()时，第一个参数传入的不是Cat的父类。
class Animal:
 pass

class Tree:
 pass

class Cat(Animal):
 def __init__(self):
 super(Tree, self).__init__() # 违背，不推荐的super()函数调用
 super(Animal, self).__init__()
合规代码示例：
class Animal:
 pass

class Tree:
 pass

class Cat(Animal):
 def __init__(self):
 super(Animal, self).__init__()
[bookmark: _Toc650199376]R-1-8 except子句的顺序必须从具体到通用
规则说明：except子句的顺序应从具体到通用，否则会导致异常无法按预期的方式被捕获。规则在检查到except子句的顺序不正确时报出违反。
违规代码示例：第二个except块永远不会被执行，因为所有的异常都被第一个except块捕获了。
try:
 print(int(input()))
except Exception:
 raise
except TypeError: # 违背
 raise
合规代码示例：应该将TypeError放在Exception的前面。
try:
 print(int(input()))
except TypeError:
 raise
except Exception:
 raise
[bookmark: _Toc135661020][bookmark: _Toc1504116496]R-1-9 禁止__slots__中的值与类变量、属性或方法存在冲突
规则说明：若__slots__中的值与类变量、属性或方法冲突，会引发错误，如ValueError或AttributeError。
违规代码示例：__slots__中的age与变量名冲突。
class Person:
 __slots__ = ("age", "name", "say_hi") # 违背
 name = None

 def __init__(self, age, name):
 self.age = age
 self.name = name

 @property
 def age(self):
 return self.age

 def say_hi(self):
 print(f"Hi, I'm {self.name}.")
合规代码示例：
class Person:
 __slots__ = ("_age", "name",)

 def __init__(self, age, name):
 self._age = age
 self.name = name

 @property
 def age(self):
 return self._age

 def say_hi(self):
 print(f"Hi, I'm {self.name}.")
[bookmark: _Toc1655939435][bookmark: _Toc135661010]R-1-10 禁止访问未被赋值的实例成员
规则说明：访问未赋值的实例成员会引发AttributeError。
违规代码示例：在下述代码示例中，成员变量在被定义前被使用。
class Foo:
 def __init__(self, param):
 if self.param:
 pass
 self.param = param # 违背
合规代码示例：
class Foo:
 def __init__(self, param):
 self.param = param
 if self.param:
 pass
[bookmark: _Toc2133502572]R-1-11 在局部作用域中使用全局变量必须添加global声明
规则说明：自Python 3.6开始，若在局部作用域中使用全局变量而未声明为global会引发错误（在Python 3.6之前只作为警告）。
违规代码示例：在声明变量TOMATO为global前就使用
TOMATO = "black cherry"
def update_tomato():
 print(TOMATO) # 违背
 global TOMATO
 TOMATO = "cherry tomato"
合规代码示例：
TOMATO = "black cherry"
def update_tomato():
 global TOMATO
 TOMATO = "moneymaker"
[bookmark: _Toc135661009][bookmark: _Toc1243273645]R-1-12 禁止在循环外部使用循环变量
规则说明：在循环之外使用循环变量（即由for循环、列表推导式或生成器表达式定义的变量），可能会导致UnboundLocalError错误，或导致非预期的结果。
违规代码示例：若传入find_even_number的列表为空，会引发UnboundLocalError错误。若传入一个奇数，find_even_number函数也会返回这个奇数。
def find_even_number(numbers):
 for x in numbers:
 if x % 2 == 0:
 break
 return x # 违背
合规代码示例：
def find_even_number(numbers):
 for x in numbers:
 if x % 2:
 return x
 return None
[bookmark: _Toc684266205]R-1-13 禁止将变量同时声明为nonlocal和global
规则说明：nonlocal关键字用于指示一个名称在当前函数的外层函数中声明，而global关键字用于指示一个名称在全局作用域中声明。将变量同时声明为nonlocal和global会导致SyntaxError。
违规代码示例：将NUMBER同时声明为nonlocal和global。
NUMBER = 42
def update_number(number): # 违背
 global NUMBER
 nonlocal NUMBER
 NUMBER = number
 print(f"New global number is: {NUMBER}")

update_number(24)
合规代码示例：
NUMBER = 42
def update_number(number):
 global NUMBER
 NUMBER = number
 print(f"New global number is: {NUMBER}")

update_number(24)
[bookmark: _Toc687177750][bookmark: _Toc135661018][bookmark: _Hlk128820184]R-1-14 禁止使用C语言风格的运算符++或--
规则说明：在Python中不支持使用C语言风格的运算符--和++，规则在检测到这种情况时报出违反提示。
违规代码示例：由于Python中不支持使用++运算符，导致下方代码出现死循环。
i = 0
while i <= 10:
 print(i)
 ++i # 违背，不存在的运算符
合规代码示例：使用Python中支持的运算符：
i = 0
while i <= 10:
 print(i)
 i += 1
[bookmark: _Toc229390684][bookmark: _Hlk128821107]R-1-15 函数、类或方法不应被重复定义
规则说明：若函数、类或方法被重复定义，后出现的定义会覆盖之前的，可能导致非预期的结果。规则在检测到这种情况时报出违反提示。
违规代码示例：在下述代码示例中，第二个get_code()函数覆盖了第一个get_code()函数的定义。
def get_code():
 return 1
def get_code(): # 违背，函数、类或方法被重新定义
 pass
合规代码示例：避免出现重复的定义。
def get_code():
 return 1
[bookmark: _Toc1860206827][bookmark: _Toc636079623]警告类编程规范
[bookmark: _Toc416628995][bookmark: _Toc135661025][bookmark: _Toc135661019][bookmark: _Toc135661021][bookmark: _Toc135661008][bookmark: _Toc135661024][bookmark: _Toc135661036]R-2-1 打开文件时应当显式指定编码
规则说明：在打开文档时应当指定编码。隐式地使用系统默认值可能会在其他操作系统上引起问题。
违规代码示例：在下述代码示例中，在打开文档时未指定编码。
def foo(file_path):
 with open(file_path) as file: # 违背，未显式指定编码
 contents = file.read()
合规代码示例：打开文档操作指定编码类型，例如utf-8。
def foo(file_path):
 with open(file_path, encoding="utf-8") as file:
 contents = file.read()
[bookmark: _Toc1486829745]R-2-2 不应出现未被使用的参数
规则说明：若函数或方法中存在未被使用的参数，则可能存在冗余的参数或被遗漏。规则在检测到这种情况时报出违反提示。
违规代码示例：参数y未被使用。
def print_point(x, y): # 违背，函数或方法的参数没有被使用
 print(f"Point is located at {x},{x}")
合规代码示例：方法中定义的参数都被使用到了。
def print_point(x, y):
 print(f"Point is located at {x},{y}")
[bookmark: _Toc1027807723][bookmark: _Toc135661014]R-2-3 进行格式字符串操作时不应出现未被使用的参数
规则说明：进行格式字符串操作时存在未被使用的参数，可能是冗余或被遗漏。规则在检测到这种情况时报出违反提示。
违规代码示例：参数z未被使用。
print("{x} {y}".format(x=1, y=2, z=3)) # 违背，未使用的格式参数
合规代码示例：使用变量，或删除冗余的变量。
print("{x} {y} {z}".format(x=1, y=2, z=3))
or
print("{x} {y}".format(x=1, y=2))
[bookmark: _Toc5943993][bookmark: _Toc135661015]R-2-4 不应出现未被使用的导入模块
规则说明：导入的模块或变量没有被使用，可能是冗余或被遗漏。规则在检测到这种情况时报出违反提示。
违规代码示例：导入的Path模块未被使用。
from logging import getLogger
from pathlib import Path # 违背，导入的模块或变量没有被使用

LOGGER = getLogger(__name__)
合规代码示例：使用模块，或删除冗余的import语句。
from logging import getLogger

LOGGER = getLogger(__name__)
[bookmark: _Toc1116442589][bookmark: _Toc135661013]R-2-5 不应出现未被使用的变量
规则说明：代码中存在未被使用的变量，可能是冗余的定义或被遗漏。规则在检测到这种情况时报出违反提示。
违规代码示例：在下述代码示例中，程序员定义了fruit2变量却未使用。
def print_fruits():
 fruit1 = "orange"
 fruit2 = "apple" # 违背，定义了一个变量但未使用
 print(fruit1)
合规代码示例：变量均被使用。
def print_fruits():
 fruit1 = "orange"
 fruit2 = "apple"
 print(fruit1, fruit2)
[bookmark: _Toc1485969484][bookmark: _Toc135661034]R-2-6 禁止重写的方法与基类不匹配
规则说明：重写的方法与基类不匹配时，会导致运行时出现潜在的错误。
违规代码示例：在下述代码示例中，在Fruit类中，bore方法是异步方法，但在Apple类中，bore方法是同步方法。这违反了Python的方法重写规则，因为重写的方法应该与基类中的方法有相同的参数和异步性。
class Fruit:
 async def bore(self, insect):
 insect.eat(self)

class Apple(Fruit):
 def bore(self, insect): # 违背，重写方式与基类不匹配
 insect.eat(self)
合规代码示例：
class Fruit:
 async def bore(self, insect):
 insect.eat(self)

class Apple(Fruit):
 async def bore(self, insect):
 insect.eat(self)
[bookmark: _Toc1601786625][bookmark: _Hlk128904390]R-2-7 禁止抛出NotImplemented
规则说明：NotImplemented是一个特殊的值，用于表示特定方法或操作不支持、需尝试使用其他方法，可以在return语句中作为返回，不应作为异常抛出。可以被抛出的异常是NotImplementedError，用于表示抽象方法或接口未实现，需要当前中断操作进行处理。错误地抛出NotImplemented，可能导致操作未被中断、继续执行，导致非预期的结果。
违规代码示例：抛出了NotImplemented
class Worm:
 def bore(self):
 raise NotImplemented # 违背
合规代码示例：抛出NotImplementedError。
class Worm:
 def bore(self):
 raise NotImplementedError
[bookmark: _Toc372807583]R-2-8 抽象方法在具体类中必须被重写
规则说明：具体类中存在未实现的抽象方法时，会引发NotImplementedError异常。
违规代码示例一：
class Pet:
 def make_sound(self):
 raise NotImplementedError
class Cat(Pet): # 违背，抽象方法在具体类中没有被重写
 pass
合规代码示例一：
class Pet:
 def make_sound(self):
 raise NotImplementedError
class Cat(Pet):
 def make_sound(self):
 print("Meeeow")
违规代码示例二：
import abc
class WildAnimal:
 @abc.abstractmethod
 def make_sound(self):
 pass

class Panther(WildAnimal): # 违背
 pass
合规代码示例二：
import abc
class WildAnimal:
 @abc.abstractmethod
 def make_sound(self):
 pass

class Panther(WildAnimal):
 def make_sound(self):
 print("MEEEOW")
[bookmark: _Hlk128838111][bookmark: _Toc1567249182][bookmark: _Toc135661032]R-2-9 方法的参数数量与实现的接口或重写的方法中的数量必须相同
[bookmark: _Hlk128838282]规则说明：如果一个方法的参数数量与实现的接口或重写的方法中的数量不同，具有默认值的额外参数将被忽略。
违规代码示例：在下述代码示例中，重写的方法中参数数量与原方法参数数量不同。
class Drink:
 def mix(self, fluid_one, fluid_two):
 return fluid_one + fluid_two

class Cocktail(Drink):
 def mix(self, fluid_one, fluid_two, alcoholic_fluid_one): # 违背
 return fluid_one + fluid_two + alcoholic_fluid_one

class Car:
 tank = 0
 def fill_tank(self, gas):
 self.tank += gas

class Airplane(Car):
 kerosene_tank = 0
 def fill_tank(self, gas, kerosene): # 违背
 self.tank += gas
 self.kerosene_tank += kerosene
合规代码示例：在下列代码中，方法的参数数量与实现的接口或重写的方法中的数量相同，且有可以被忽略的具有默认值的额外参数。
class Drink:
 def mix(self, fluid_one, fluid_two):
 return fluid_one + fluid_two

class Cocktail(Drink):
 def mix(self, fluid_one, fluid_two, alcoholic_fluid_one="Beer"):
 return fluid_one + fluid_two + alcoholic_fluid_one

class Car:
 tank = 0
 def fill_tank(self, gas):
 self.tank += gas

class Airplane:
 tank = 0
 kerosene_tank = 0
 def fill_tank(self, gas, kerosene):
 self.tank += gas
 self.kerosene_tank += kerosene
[bookmark: _Toc1870071419][bookmark: _Toc135661037]R-2-10 typing.final修饰的方法不应被重写
规则说明：typing.final修饰的方法不应该被重写。
违规代码示例：例子中，Animal类方法can_breathe被@final修饰，不能在Animal类的子类中被重写或重载，否则会导致TypeError错误。
from typing import final
class Animal:
 @final
 def can_breathe(self):
 return True

class Cat(Animal):
 def can_breathe(self): # 违背，被装饰为 typing.final 的方法被重写
 pass
合规代码示例：
from typing import final
class Animal:
 @final
 def can_breathe(self):
 return True

class Cat(Animal):
 def can_purr(self):
 return True
[bookmark: _Toc1867165288][bookmark: _Toc135661033]R-2-11 禁止方法参数的名称与实现接口或重写方法中的名称不同
规则说明：当方法参数的名称与实现接口或重写方法中的名称应该保持相同。
违规代码示例：在下述代码示例中，实现Fruit类的Orange类中的brew函数，参数名称不同。
class Fruit:
 def brew(self, ingredient_name: str):
 print(f"Brewing a {type(self)} with {ingredient_name}")

class Apple(Fruit):
 ...
class Orange(Fruit):
 def brew(self, flavor: str): # 违背
 print(f"Brewing an orange with {flavor}")

for fruit, ingredient_name in [[Orange(), "thyme"], [Apple(), "cinnamon"]]:
 fruit.brew(ingredient_name=ingredient_name)
合规代码示例：在下列代码中，实现Fruit类的Orange类中的brew函数，参数名称相同。
class Fruit:
 def brew(self, ingredient_name: str):
 print(f"Brewing a {type(self)} with {ingredient_name}")

class Apple(Fruit):
 ...

class Orange(Fruit):
 def brew(self, ingredient_name: str):
 print(f"Brewing an orange with {ingredient_name}")

for fruit, ingredient_name in [[Orange(), "thyme"], [Apple(), "cinnamon"]]:
 fruit.brew(ingredient_name=ingredient_name)
[bookmark: _Toc268461805]R-2-12 禁止将字符串常量作为assert的第一个参数
[bookmark: _Hlk128839357]规则说明：当assert语句的第一个参数是字符串字面值时，会导致assert语句总是通过。规则在检测到这种情况时报出违反提示。
违规代码示例：assert语句的第一个参数是字符串字面值，导致assert语句总是通过。
def test_division():
 a = 9 / 3
 assert "No ZeroDivisionError were raised" # 违背，assert第一个参数是字面值
合规代码示例：assert语句应为判断语句。
def test_division():
 a = 9 / 3
 assert a == 3
[bookmark: _Toc174414288]R-2-13 禁止对元组进行assert操作
规则说明：对元组进行assert操作总是会在该元组非空时计算为真，并且在该元组为空时计算为假。
违规代码示例：在下述代码示例中，assert调用总是会在该元组非空时计算为真，并且在该元组为空时计算为假。
assert (1, None) # 违背，元组的 assert 调用
合规代码示例：在下列代码中，代码首先将元组(1, None)赋值给变量x和y。然后，它使用两个assert语句分别检查x和y是否为True。
x, y = (1, None)
assert x
assert y
[bookmark: _Toc65760261]R-2-14 禁止出现缩进错误
规则说明：在代码的缩进中存在意外数量的制表符或空格时，Python执行不一定会出现错误，但执行的结果可能是非预期的。
违规代码示例：缩进错误，if语句使用的空格数量不足。
if input():
 print('yes') # 违背，在代码的缩进中发现了意外数量的制表符或空格
合规代码示例：使用正确的缩进（4个空格或制表符）。
if input():
 print('yes')
[bookmark: _Toc1426112069]R-2-15 捕捉多个异常时，异常捕获表达式中不应使用or
规则说明：如果意图捕获多个异常，应写为"except (A, B):"。
违规代码示例：在下述代码示例中，捕获的异常形式为"except A or B:"，如果意图捕获多个异常，则应将其重写为"except (A, B):"。
try:
 1 / 0
except ZeroDivisionError or ValueError: # 违背，捕获的异常形式为 "except A or B:"
 pass
合规代码示例：在下列代码中，为了捕捉多个异常，使用了except (A, B)语句捕捉。
try:
 1 / 0
except (ZeroDivisionError, ValueError):
 pass
[bookmark: _Toc135661070][bookmark: _Toc600559516][bookmark: _Hlk128840549]A-2-1 父类__init__方法应在派生类中被调用
建议说明：当父类有__init__方法时，派生类中应调用该方法。
违规代码示例：在下述代码示例中，在父类的__init__方法在派生类中没有被调用。
class Fruit:
 def __init__(self, name="fruit"):
 self.name = name
 print("Creating a {self.name}")

class Apple(Fruit):
 def __init__(self): # 违背，父类的__init__方法在派生类中没有被调用
 print("Creating an apple")
合规代码示例：父类的__init__方法在派生类中被调用。
class Fruit:
 def __init__(self, name="fruit"):
 self.name = name
 print("Creating a {self.name}")

class Apple(Fruit):
 def __init__(self):
 super().__init__("apple")
[bookmark: _Toc135661055][bookmark: _Toc430644512]A-2-2 应显示设置子进程运行检查
建议说明：在默认情况下，check关键字被设置为False。这意味着由subprocess.run启动的进程可能会以非零退出码退出并静默失败。最好显式地设置它的明确错误处理行为。
违规代码示例：在下述代码示例中，没有显式地设置它的明确错误处理行为。
import subprocess
proc = subprocess.run(["ls"]) # 违背，未显示设置子进程运行检查
合规代码示例：显式地设置它的明确错误处理行为：
import subprocess
proc = subprocess.run(["ls"], check=False)
[bookmark: _Toc135661071][bookmark: _Toc822422794][bookmark: _Hlk128841455]A-2-3 被typing.final修饰的类禁止被子类化
建议说明：被typing.final修饰的类不应该被子类化。
违规代码示例：在下述代码示例中，使用typing.final修饰的类被子类化了。
from typing import final
@final
class PlatypusData:
 """General Platypus data."""

 average_length = 46
 average_body_temperature = 32

class FluorescentPlaytipus(PlatypusData): # 违背，使用 typing.final 装饰的类被子类化
 """Playtipus with fluorescent fur."""
合规代码示例：
from typing import final

@final
class PlatypusData:
 """General Platypus data."""

 average_length = 46
 average_body_temperature = 32

def print_average_length_platypus():
 output = f"The average length of a platypus is: {PlatypusData.average_length}cm"
 print(output)
[bookmark: _Toc135661068][bookmark: _Toc1255146666][bookmark: _Hlk128841740]A-2-4 避免方法的签名与实现接口或重写的方法不同
[bookmark: _Hlk128841766]建议说明：方法的签名与实现接口或重写的方法应该保持一致。
违规代码示例：在下述代码示例中，方法run的签名与重写的方法不同。
class Animal:
 def run(self, distance=0):
 print(f"Ran {distance} km!")

class Dog(Animal):
def run(self, distance): # 违背，方法的签名与重写的方法不同
 super(Animal, self).run(distance)
 print("Fetched that stick, wuff !")
合规代码示例：
class Animal:
 def run(self, distance=0):
 print(f"Ran {distance} km!")

class Dog(Animal):
 def run(self, distance=0):
 super(Animal, self).run(distance)
 print("Fetched that stick, wuff !")
[bookmark: _Toc518150981][bookmark: _Toc135661046]A-2-5 避免变量为自身赋值
建议说明：变量为自身赋值是没有意义的，这可能是手误，规则在检测到这种情况时报出违反提示。
违规代码示例：使用变量year为自身赋值。
year = 2000
year = year # 违背，变量被赋值为其本身
合规代码示例：进行正确的赋值。
year = 2000
[bookmark: _Toc517349082][bookmark: _Toc135661049]A-2-6 避免重复导入模块
建议说明：一个模块不应该被重复多次导入。规则在检测到这种情况时报出违反提示。
违规代码示例：re模块被导入多次。
import re
import re # 违背，模块被多次导入
合规代码示例：去除冗余的导入语句。
import re
[bookmark: _Toc135661061][bookmark: _Toc2072218118]A-2-7 没有返回值的return语句应显示地声明为return None
建议说明：根据PEP8规范，如果有任何的return语句返回一个表达式，则任何没有返回值的return语句都应该显示地声明为return None，并且函数末尾应该显示地存在一个return语句（如果可达）。
违规代码示例：在下述代码示例中，有return语句返回一个表达式，则没有返回值的return语句应该明确地声明为return None，并且保证可达的函数末尾存在一个明确的return语句。
def get_the_answer(value: str) -> str | None: # 违背，不一致的返回语句
 if value:
 return value
合规代码示例：有任何的return语句返回一个表达式，则任何没有返回值的return语句都应该明确地声明为return None。
def get_the_answer(value: str) -> str | None:
 if value:
 return value
 return None
[bookmark: _Toc135661048][bookmark: _Toc2027605827][bookmark: _Hlk128842708]A-2-8 避免变量名遮蔽外部作用域或异常处理程序中的定义
[bookmark: _Hlk128842776]建议说明：此建议描述的是变量名遮蔽了外部作用域或异常处理程序中定义的名称，容易导致混淆。规则在检测到这种情况时报出违反提示。
违规代码示例：参数名遮蔽了全局变量名。
count = 10
def count_it(count): # 遮蔽了全局变量count
 for i in range(count):
 print(i)
合规代码示例：参数与外部作用域或异常处理程序中的变量名不同，避免造成遮蔽。
count = 10
def count_it(limit):
 for i in range(limit):
 print(i)
[bookmark: _Toc135661044][bookmark: _Toc1700623793]A-2-9 避免变量在同一赋值表达式中被重复声明
建议说明：变量不应在同一赋值表达式中被重复声明，会导致之前的赋值被覆盖，这可能是手误导致的。规则在检测到这种情况时报出违反提示。
违规代码示例：变量FIRST在同一赋值表达式中被重新声明。
FIRST, FIRST = (1, 2) # 违背，变量在同一赋值中被重新声明
合规代码示例：对不同的变量进行赋值。
FIRST, SECOND = (1, 2)
[bookmark: _Toc1524231028][bookmark: _Toc135661067][bookmark: _Toc135661056]A-2-10 变量或函数不应重写内置函数
[bookmark: _Hlk128842967]建议说明：变量或函数不应重写内置函数。
违规代码示例：在下述代码示例中，map函数重写了内置函数。
def map(): # 违背，函数重写了内置函数 map
 pass
合规代码示例：
def map_iterable():
 pass
[bookmark: _Toc418462533][bookmark: _Hlk128903734]A-2-11 不建议使用exec语句
[bookmark: _Hlk128903663]建议说明：用户输入使用exec语句是很危险的，并且通常比实际代码慢。这并不意味着永远不应该使用它，但应首先考虑替代方案并限制可用的函数。
违规代码示例：在下述代码示例中使用了exec语句。对于用户输入使用此函数是很危险的，并且通常比实际代码慢，应首先考虑替代方案并限制可用的函数。
username = "Ada"
code_to_execute = f"""input('Enter code to be executed please, {username}: ')"""
program = exec(code_to_execute) # 违背，使用exec语句
exec(program) # 违背，使用exec语句
合规代码示例：对exec语句进行了处理。
def get_user_code(name):
 return input(f'Enter code to be executed please, {name}: ')

username = "Ada"
allowed_globals = {'__builtins__' : None}
allowed_locals = {'print': print}
exec(get_user_code(username), allowed_globals, allowed_locals)
[bookmark: _Toc90848206][bookmark: _Toc135661059]A-2-12 避免使用eval函数
[bookmark: _Hlk128904158]建议说明：作为替代，可使用ast.literal_eval安全地从不可信源评估包含Python表达式的字符串。
违规代码示例：在下述代码示例中使用了eval函数，应该考虑使用ast.literal_eval安全地从不可信源评估包含Python表达式的字符串。
eval("[1, 2, 3]") # 违背，使用eval函数
合规代码示例：使用ast.literal_eval替代eval函数。
from ast import literal_eval

literal_eval("[1, 2, 3]")
[bookmark: _Toc24925225][bookmark: _Toc135661043][bookmark: _Hlk128904728]A-2-13 避免字典的赋值表达式中出现重复的键
建议说明：字典的赋值表达式中多次绑定相同的键，会导致之前的键值被覆盖，这可能是手误导致的。规则在检测到这种情况时报出违反提示。
违规代码示例：在下述代码示例中，程序员编码时字典表达式多次绑定相同的键。
test_score = {"Mathematics": 85, "Biology": 90, "Mathematics": 75} # 违背，字典表达式多次绑定相同的键
合规代码示例：字典表达式不存在多个相同的键。
test_score = {"Mathematics": 85, "Biology": 90, "History": 75}
[bookmark: _Toc135661041][bookmark: _Toc158945410]A-2-14 避免出现重复的异常捕获
建议说明：同类型的异常不应该被重复捕获，后出现的捕获是没有意义的。
违规代码示例：试图捕获一个之前已经被捕获的类型。
try:
 1 / 0
except ZeroDivisionError:
 pass
except ZeroDivisionError: # 违背，except 捕获了一个之前已经被捕获的类型
 pass
合规代码示例：对同一个错误只进行一次捕获。
try:
 1 / 0
except ZeroDivisionError:
 pass
[bookmark: _Toc135661052][bookmark: _Toc2073332649]A-2-15 避免访问受保护的成员
建议说明：名称以下划线开头的类成员是受保护的成员。在类外或子类中，访问受保护的类成员将导致AttributeError。
违规代码示例：在类外访问受保护成员__swallow。
class Worm:
 def __swallow(self):
 pass
jim = Worm()
jim.__swallow() # 违背，访问受保护成员
合规代码示例：对受保护的成员封装后访问。
class Worm:
 def __swallow(self):
 pass
 def eat(self):
 return self.__swallow()

jim = Worm()
jim.eat()
[bookmark: _Toc1432175521][bookmark: _Toc135661063]A-2-16 不应存在死代码
建议说明：语句没有任何副作用时应该被删除。
违规代码示例：在下述代码示例中，语句没有任何副作用。
[1, 2, 3] # [pointless-statement] # 违背
合规代码示例：将语句进行了优化。
NUMBERS = [1, 2, 3]
print(NUMBERS)
[bookmark: _Toc1577265871][bookmark: _Toc135661040]A-2-17 谨慎在finally语句块中使用break或return
规则说明：finally语句块中的break或return可能会吞没try语句块中引发的异常，导致异常无法被捕获和抛出。
违规代码示例：finally块中使用了返回语句，无论try块是否引发异常，函数的返回值始终是299792458。
class FasterThanTheSpeedOfLightError(ZeroDivisionError):
 def __init__(self):
 super().__init__("You can't go faster than the speed of light !")

def calculate_speed(distance: float, time: float) -> float:
 try:
 return distance / time
[bookmark: _Hlk135128107] except ZeroDivisionError as e:
 raise FasterThanTheSpeedOfLightError() from e
 finally:
 return 299792458 # 违背
合规代码示例：在函数的开始处定义一个变量并将其作为try块中的返回值，而不是在finally块中返回。
class FasterThanTheSpeedOfLightError(ZeroDivisionError):
 def __init__(self):
 super().__init__("You can't go faster than the speed of light !")

def calculate_speed(distance: float, time: float) -> float:
 try:
 return distance / time
 except ZeroDivisionError as e:
 raise FasterThanTheSpeedOfLightError() from e
[bookmark: _Toc135661054][bookmark: _Toc569355329][bookmark: _Hlk128842973]A-2-18 避免使用冲突的文件操作模式
规则说明：Python支持以r，w，a，x，b，+，和U模式操作文件（其中b，+，和U仅与r一起使用）。将冲突的操作模式组合起来操作文件会导致错误。
违规代码示例：使用rwx模式打开文件，导致错误：ValueError: must have exactly one of create/read/write/append mode
def foo(file_path):
 with open(file_path, "rwx") as file: # 违背，使用了冲突的文件操作模式
 contents = file.read()
合规代码示例：以正确的模式操作文件。
def foo(file_path):
 with open(file_path, "r") as file:
 contents = file.read()
[bookmark: _Toc2115367118][bookmark: _Toc135661042]A-2-19 避免使用空的except语句
[bookmark: _Hlk128844297]规则说明：空的except语句等同于“except BaseException”，将捕捉包括 “SystemExit”和“KeyboardInterrupt”的异常。使用“Control-C”中断程序将受到影响，并且可能掩盖其他问题。如果要捕捉所有表示程序错误的异常，应使用“except Exception:”。
违规代码示例：在下述代码示例中，代码捕获了所有异常，使用了单个except子句。单个except子句会捕获所有类型的异常，使得使用“Control-C”更难中断程序，并且可能掩盖其他问题。如果要捕捉所有表示程序错误的异常，建议使用“except Exception:”。
try:
 import platform_specific_module
except: # 违背，请使用“except Exception:”
 platform_specific_module = None
合规代码示例：在下列代码中，使用了except Exception，捕捉具体的ImportError。
try:
 import platform_specific_module
except ImportError:
 platform_specific_module = None
[bookmark: _Toc135661064][bookmark: _Toc1383376141]A-2-20 避免在闭包中使用循环中定义的变量
规则说明：如果一个在闭包中使用的变量是在循环中定义的，将导致所有闭包都使用相同的值作为封闭变量。
违规代码示例：在下述代码示例中，bar函数是在循环内定义的，它会对变量i创建一个闭包，当在循环外调用bar函数时，它将使用循环结束时的i的最终值，而不是函数定义时的值。
def foo(numbers):
 for i in numbers:
 def bar():
 print(i) # 违背，闭包中使用的变量是在循环中定义的
 bar()
合规代码示例：在下列代码中，代码没有使用闭包，它将i作为参数传递给bar函数，以便在每次调用时打印当前元素的值。
def bar(x):
 print(x)

def foo(numbers):
 for i in numbers:
 bar(i)
[bookmark: _Toc135661062][bookmark: _Toc1744839365][bookmark: _Hlk128902794]A-2-21 谨慎与可调用对象进行比较
规则说明：与可调用对象比较，可能导致非预期结果。
违规代码示例：在下述代码示例中，function_returning_a_fruit是一个函数，而fruit是一个字符串，进行了字符串与函数的比较，在python内是合法的，但返回的结果不一定是需要的。
def function_returning_a_fruit() -> str:
 return "orange"

def is_an_orange(fruit: str = "apple"):
 # apple == <function function_returning_a_fruit at 0x7f343ff0a1f0>
[bookmark: _Hlk128902964] return fruit == function_returning_a_fruit # 违背，进行了与可调用对象的比较
合规代码示例：在下列代码中，代码将函数返回的字符串与fruit参数进行比较。没有进行可调用对象的比较。
def function_returning_a_fruit() -> str:
return "orange"

def is_an_orange(fruit: str = "apple"):
 # apple == orange
 return fruit == function_returning_a_fruit()
[bookmark: _Toc135661053][bookmark: _Toc1626007770]A-2-22 避免使用可变对象作为默认参数值
规则说明：在Python中，函数的默认参数值只会在函数定义时创建一次，之后每次调用函数时都会使用同一个默认值。如果默认参数是可变对象（如列表或字典），则每次调用函数时对默认参数的修改都会影响下一次调用时的默认值。这可能会导致非预期的结果。
违规代码示例：由于默认参数是一个可变列表，第一次调用时默认参数为空，第二次调用时默认参数列表中已被添加进一个字符串。
def whats_on_the_telly(penguin=[]): # 违背，默认参数值中包含可变值
 penguin.append("property of the zoo")
 return penguin
合规代码示例：使用None作为默认参数值，而不是可变对象。
def whats_on_the_telly(penguin=None):
 if penguin is None:
 penguin = []
 penguin.append("property of the zoo")
 return penguin
[bookmark: _Toc135661069][bookmark: _Toc1583182315]A-2-23 避免调用非直接父类的__init__方法
规则说明：避免调用非直接父类的__init__方法。
违规代码示例：在下述代码示例中，Cat类调用了Animal类的__init__方法，而不是其直接父类Vertebrate的__init__方法。
class Animal:
 def __init__(self):
 self.is_multicellular = True

class Vertebrate(Animal):
 def __init__(self):
 super().__init__()
 self.has_vertebrae = True

class Cat(Vertebrate):
 def __init__(self):
 Animal.__init__(self) # 违背，调用直接父类Vertebrate的__init__方法
 self.is_adorable = True
合规代码示例：在下列代码中，使用super函数来调用直接父类Vertebrate的__init__方法。
class Animal:
 def __init__(self):
 self.is_multicellular = True

class Vertebrate(Animal):
 def __init__(self):
 super().__init__()
 self.has_vertebrae = True

class Cat(Vertebrate):
 def __init__(self):
 super().__init__()
 self.is_adorable = True
[bookmark: _Toc1222781875][bookmark: _Toc135661051][bookmark: _Hlk129363689]A-2-24 避免使用C语言风格的分号
规则说明：在Python中，当语句结束时不需使用分号。
违规代码示例：不需使用分号。
print("Hello World!"); # 违背，不必要的分号
合规代码示例：不使用分号结尾。
print("Hello World!")
[bookmark: _Toc1429208363][bookmark: _Toc2023954982][bookmark: _Toc135661028][bookmark: _Toc135661026][bookmark: _Toc135661012][bookmark: _Toc135661031]约定类编程规范
[bookmark: _Toc470413994][bookmark: _Toc135661027]R-3-1 不应出现实参与形参名称完全相同但顺序不一致的情况
规则说明：若实参名称与形参名称完全相同但顺序不一致，很可能是手误。规则在检测到这种情况时报出违反提示。
违规代码示例：调用function_3_args时，使用完全相同的参数名称，但顺序不同。
def function_3_args(first_argument, second_argument, third_argument):
 """Three arguments function"""
 return first_argument, second_argument, third_argument

def args_out_of_order():
 first_argument = 1
 second_argument = 2
 third_argument = 3

 function_3_args(# 违背，调用者的参数名称与函数签名中的参数名称完全匹配但顺序不同
 first_argument, third_argument, second_argument
)
合规代码示例：调整参数顺序。
def function_3_args(first_argument, second_argument, third_argument):
 """Three arguments function"""
 return first_argument, second_argument, third_argument

def args_out_of_order():
 first_argument = 1
 second_argument = 2
 third_argument = 3

 function_3_args(first_argument, second_argument, third_argument)
[bookmark: _Toc1360692551]R-3-2 禁止导入语句前出现用户代码
规则说明：代码和导入语句混用违反了PEP 8中关于导入放在文件开头的建议。
违规代码示例：在下述代码示例中混用了代码和导入语句，这是不建议的。
import os
home = os.environ['HOME']
import sys # 违背，代码和导入语句混用
print(f'Home directory is {home}', file=sys.stderr)
合规代码示例：先导入所需包，再写代码。
import os
import sys
home = os.environ['HOME']
print(f'Home directory is {home}', file=sys.stderr)
[bookmark: _Toc606347754]R-3-3 遍历字典成员或键时，建议直接遍历字典本身
规则说明：当使用.keys()方法遍历一个字典的键或者使用.keys()来进行成员检查时，建议直接遍历字典本身，以提高代码效率。
违规代码示例：在下述代码示例中，使用了不被建议的方法。
FRUITS = {"apple": 1, "pear": 5, "peach": 10}
for fruit in FRUITS.keys(): # 违背，建议直接遍历字典本身
 print(fruit)
合规代码示例：使用如下的代码可以更加快速。
FRUITS = {"apple": 1, "pear": 5, "peach": 10}
for fruit in FRUITS:
 print(fruit)
[bookmark: _Toc135661065][bookmark: _Toc1076796463][bookmark: _Toc135661038]A-3-1 类的__slots__应是可迭代对象
规则说明：一个类的__slots__应该是可迭代对象而不是一个字符串。
违规代码示例：在下述代码示例中，__slots__为一个简单的字符串，而非可迭代对象。
class Fruit: # 违背，类的__slots__是一个简单的字符串而不是可迭代对象
 __slots__ = "name"
 def __init__(self, name):
 self.name = name
合规代码示例：使用如下的代码时，类的__slots__为一个可迭代对象。
class Fruit:
 __slots__ = ("name",)
 def __init__(self, name):
 self.name = name
[bookmark: _Toc873460372][bookmark: _Toc135661047]A-3-2 避免在布尔表达式中包含不必要的not
规则说明：布尔表达式中不应出现不必要的否定，容易造成理解上的困难。规则在检测到这种情况时报出违反提示。
违规代码示例：在下述代码示例中，使用了一个双重否定的布尔表达式。
if not not input(): # 违背，布尔表达式包含不必要的not
 pass
合规代码示例：简化布尔表达式，去掉不必要的否定，使代码清晰简洁。
if input():
 pass
[bookmark: _Toc50261312][bookmark: _Toc1100365246]重构类编程规范
[bookmark: _Toc780797513][bookmark: _Toc135661060][bookmark: _Toc135660922][bookmark: _Toc135661039][bookmark: _Hlk128820875]A-4-1 避免使用导入包的子模块的名称作为别名
建议说明：导入包的子模块不建议使用相同的名称作为别名。
违规代码示例：在下述代码示例中，导入包的子模块使用了相同的名称作为别名。
import os.path as path # 违背，导入包的子模块使用相同的名称作为别名
合规代码示例：导入包的子模块没有使用相同的名称作为别名：
from os import path
[bookmark: _Toc135661072][bookmark: _Toc1738717821]A-4-2 不应为属性定义参数
[bookmark: _Hlk128821829]建议说明：给属性传递参数是没有意义的，因为属性无法使用附加参数进行调用。
违规代码示例：在下述代码示例中，一个属性附带有相关参数。
class Worm:
 @property
 f # 违背，属性具有参数
 pass
合规代码示例：将属性与相关参数进行分离：
class Worm:
 @property
 def bore(self):
 """Property accessed with '.bore'."""
 pass

 def bore_with_depth(depth):
 """Function called with .bore_with_depth(depth)."""
 pass
[bookmark: _Toc135661050][bookmark: _Toc1820432818][bookmark: _Hlk128832833]A-4-3 避免在布尔表达式中包含冗余的条件
建议说明：在布尔表达式中使用冗余的条件会造成理解困难。规则在布尔条件可以简化为一个常量值时报出违反提示。
违规代码示例：布尔条件or True可以被简化掉。
def is_a_fruit(fruit):
 return bool(fruit in {"apple", "orange"} or True) # 违背，条件可以简化为一个常量值
合规代码示例：简化布尔表达式。
def is_a_fruit(fruit):
 return fruit in {"apple", "orange"}
[bookmark: _Toc135661045][bookmark: _Toc814853317]A-4-4 避免对象与自身进行比较
建议说明：对象不应与自身进行比较，比较结果恒为真。这可能是手误导致的，规则在检测到这种情况时报出违反提示。
违规代码示例：将对象与其本身进行比较。
def is_an_orange(fruit):
 an_orange = "orange"
[bookmark: _Hlk128833122] return fruit == fruit # 违背，对象与其本身进行比较
合规代码示例：进行正确的比较。
def is_an_orange(fruit):
 an_orange = "orange"
 return an_orange == fruit
[bookmark: _Toc135661058][bookmark: _Toc736481900]A-4-5 建议使用sys.exit函数
规则说明：与exit或quit不同，sys.exit不依赖于site模块的可用性（因为sys模块始终可用），因此建议使用sys.exit函数。
违规代码示例：在下述代码示例中，使用exit(0)来退出程序，建议使用sys.exit()函数，可以在程序退出时向操作系统发送退出信号，表明退出是由系统函数引起的，而不是由其他代码引起的。
if __name__ == "__main__":
 user = input("Enter user name: ")
 print(f"Hello, {user}")
 exit(0) # 违背，建议使用sys.exit
合规代码示例：在下列代码中，使用sys.exit(0)来退出代码，增加代码的可读性，使你的代码更加清晰和易于维护。
import sys
if __name__ == "__main__":
 user = input("Enter user name: ")
 print(f"Hello, {user}")
 sys.exit(0)
[bookmark: _Toc135661057][bookmark: _Toc2103035639][bookmark: _Hlk128904936]A-4-6 建议使用with块替换分配资源的赋值或调用
规则说明：如果一个分配资源的赋值或调用可以被with块替换，使用with可以确保即使发生异常也会释放分配的资源。
违规代码示例：在下述代码示例中，没有使用with语句来管理文件的打开和关闭，建议使用with可以确保即使发生异常也会释放分配的资源。
file = open("apple.txt", "r", encoding="utf8") # 违背，可被with块替换
contents = file.read()
file.close()

worst = open("banana.txt", "r", encoding="utf8").read() # 违背，可被with块替换
合规代码示例：在下列代码中，使用with语句来管理文件，with语句提供了一种更安全、更可靠的方法来管理文件的打开和关闭，因为它确保文件在使用完毕后会被正确关闭。
with open("apple.txt", "r", encoding="utf8") as file:
contents = file.read()

with open("banana.txt", "r", encoding="utf8") as f:
 best = f.read()
[bookmark: _Toc286638700][bookmark: _Toc135661066]A-4-7 避免使用is进行对象和字面值的比较
规则说明：当使用is进行对象和字面值的比较时，比较的是两个对象的内存地址而不是预期的字面值，通常与预期不符。
违规代码示例：在下述代码示例中，在比较水果名称时，使用了is运算符来将fruit和字符串字面值"orange"进行比较，比较的是两个对象的内存地址，而不是它们的值。
def is_an_orange(fruit):
 return fruit is "orange" # 违背，比较对象和字面值
合规代码示例：当你使用is运算符时，它会比较两个对象的内存地址，判断它们是否是同一个对象。而当你使用==运算符时，它会比较两个对象的值是否相等：
def is_an_orange(fruit):
 return fruit == "orange"
[bookmark: _Toc135661073][bookmark: _Toc730810679][bookmark: _Toc1857005205][bookmark: _Toc135660923]评价
开展软件编码规则遵循性评价的具体要求如下：
a) 编码准则检查工具必须经过验证，验证的基本要求如下：
	1) 验证检查工具对本标准中违规代码示例的违背之处无漏报；
	2) 验证检查工具对本标准中合规代码示例的遵循之处无误报；
	3) 形成编码准则检查工具对本标准检测能力的确认报告。
b) 违背规则统计：
	1) 统计软件语句总行数N;
	2) 统计规则违反条数M；
	3) 针对违背的每一规则条款，统计违背语句行数Li,i=1，2，...，M；
	4) 统计所有规则的违背语句总行数L=L1+L2+L3+…+LM。
c) 计算违背率 P=L/N*100%，并对规则的遵循情况进行评价，评价的等级划分可以结合本行业或本项目的具体要求给出。

附录A
（资料性附录）
准则汇总索引
A.1　 [bookmark: _Toc1306638584][bookmark: _Toc1276104760][bookmark: _Toc135661074][bookmark: _Toc135660924]编码标准中的强制规则
	序号
	规则编号
	规则

	1
	R-1-1
	禁止访问未定义的变量

	2
	R-1-2
	禁止使用未赋值的局部变量

	3
	R-1-3
	禁止使用不可哈希的对象作为dict的键或set的成员

	4
	R-1-4
	用于赋值的函数调用不应仅返回None

	5
	R-1-5
	禁止关键字参数与形参名不匹配

	6
	R-1-6
	用于赋值的函数调用不应没有返回任何值

	7
	R-1-7
	禁止使用与当前类不相关的super()调用

	8
	R-1-8
	except子句的顺序必须从具体到通用

	9
	R-1-9
	禁止__slots__中的值与类变量、属性或方法存在冲突

	10
	R-1-10
	禁止访问未被赋值的实例成员

	11
	R-1-11
	在局部作用域中使用全局变量必须添加global声明

	12
	R-1-12
	禁止在循环外部使用循环变量

	13
	R-1-13
	禁止将变量同时声明为nonlocal和global

	14
	R-1-14
	禁止使用C语言风格的运算符++或--

	15
	R-1-15
	函数、类或方法不应被重复定义

	16
	R-2-1
	打开文件时应当显式指定编码

	17
	R-2-2
	不应出现未被使用的参数

	18
	R-2-3
	进行格式字符串操作时不应出现未被使用的参数

	19
	R-2-4
	不应出现未被使用的导入模块

	20
	R-2-5
	不应出现未被使用的变量

	21
	R-2-6
	禁止重写的方法与基类不匹配

	22
	R-2-7
	禁止抛出NotImplemented

	23
	R-2-8
	抽象方法在具体类中必须被重写

	24
	R-2-9
	方法的参数数量与实现的接口或重写的方法中的数量必须相同

	25
	R-2-10
	typing.final修饰的方法不应被重写

	26
	R-2-11
	禁止方法参数的名称与实现接口或重写方法中的名称不同

	27
	R-2-12
	禁止将字符串常量作为assert的第一个参数

	28
	R-2-13
	禁止对元组进行 assert 操作

	29
	R-2-14
	禁止出现缩进错误

	30
	R-2-15
	捕捉多个异常时，异常捕获表达式中不应使用or

	31
	R-3-1
	不应出现实参与形参名称完全相同但顺序不一致的情况

	32
	R-3-2
	禁止导入语句前出现用户代码

	33
	R-3-3
	遍历字典成员或键时，建议直接遍历字典本身

A.2　 [bookmark: _Toc135661075][bookmark: _Toc506907066][bookmark: _Toc135660925][bookmark: _Toc573518731]编码标准中的建议规则
	序号
	规则编号
	规则

	1
	A-2-1
	父类__init__方法应在派生类中被调用

	2
	A-2-2
	应显示设置子进程运行检查

	3
	A-2-3
	被typing.final修饰的类禁止被子类化

	4
	A-2-4
	避免方法的签名与实现接口或重写的方法不同

	5
	A-2-5
	避免变量为自身赋值

	6
	A-2-6
	避免重复导入模块

	7
	A-2-7
	没有返回值的return语句应显示地声明为return None

	8
	A-2-8
	避免变量名遮蔽外部作用域或异常处理程序中的定义

	9
	A-2-9
	变量或函数不应重写内置函数

	10
	A-2-10
	避免变量在同一赋值表达式中被重复声明

	11
	A-2-11
	不建议使用exec语句

	12
	A-2-12
	避免使用eval函数

	13
	A-2-13
	避免字典的赋值表达式中出现重复的键

	14
	A-2-14
	避免出现重复的异常捕获

	15
	A-2-15
	避免访问受保护的成员

	16
	A-2-16
	不应存在死代码

	17
	A-2-17
	谨慎在finally语句块中使用break或return

	18
	A-2-18
	避免使用冲突的文件操作模式

	19
	A-2-19
	避免使用空的except语句

	20
	A-2-20
	避免在闭包中使用循环中定义的变量

	21
	A-2-21
	谨慎与可调用对象进行比较

	22
	A-2-22
	禁止使用可变对象作为默认参数值

	23
	A-2-23
	避免调用非直接父类的__init__方法

	24
	A-2-24
	避免使用C语言风格的分号

	25
	A-3-1
	类的__slots__应是可迭代对象

	26
	A-3-2
	避免在布尔表达式中包含不必要的not

	27
	A-4-1
	避免使用导入包的子模块的名称作为别名

	28
	A-4-2
	不应为属性定义参数

	29
	A-4-3
	避免在布尔表达式中包含冗余的条件

	30
	A-4-4
	避免对象与自身进行比较

	31
	A-4-5
	建议使用sys.exit函数

	32
	A-4-6
	建议使用with块替换分配资源的赋值或调用

	33
	A-4-7
	避免使用is进行对象和字面值的比较

1

