团体标标准

T/ACEF XXXX-2024

表面活性剂中 31 种全氟和多氟烷基化合物 (PFAS) 和总可氧化前驱体(TOP) 的测定 液相色谱-三重四极杆质谱法

Determination of 31 per- and polyfluoroalkyl substances (PFAS) and total oxidizable precursors (TOP) in surfactants—Liquid chromatography-triple quadrupole mass spectrometry

(征求意见稿)

2024-XX-XX 发布

2024-XX-XX 实施

目 次

前	言		III
1 范	围		1
2 规	范性引用文件	+	1
3 木	诗和定义		1
4 方	法原理		2
5 T	- 扰和消除		2
6 枚	材和试剂		2
		字	
9 棹	品的制备		5
10 1	仪器测定		6
11 3	结果计算与表	示	7
12 2	准确度		9
13	质量保证和质	量控制	10
14	废物处置		10
15	注意事项		10
附录	ŁA(资料性)	目标化合物与同位素内标的信息	11
附录	t B(规范性)	仪器检出限	16
附录	t C(资料性)	目标化合物和同位素内标的质谱参数	18
附录	t D(资料性)	31 种 PFAS 保留时间	21

前言

本文件按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别这些专利的责任。本文件由中华环保联合会提出。

本文件由中华环保联合会标准化工作委员会归口。

本文件起草单位:生态环境部对外合作与交流中心、清华大学、上海市检测中心。本文件主要起草人:

本文件验证单位:沃特世科技(上海)有限公司、北京师范大学、中国矿业大学(北京)、中国中医科学院、北京脑科学与类脑研究所。

表面活性剂中 31 种全氟和多氟烷基化合物(PFAS)和总可氧化前驱体(TOP)的测定 液相色谱-三重四极杆质谱法

警告:实验中使用的试剂和标准溶液为有毒有害物质,溶液配制和样品前处理过程应在 通风橱内操作,按要求佩戴防护器具,避免吸入呼吸道或接触皮肤和衣物。

1 范围

本文件描述了采用液相色谱-三重四极杆质谱法直接测定以及在氧化前处理后测定表面活性剂中31种全氟和多氟烷基化合物(PFAS)的方法。

本文件适用于表面活性剂产品中 31 种 PFAS(附录 A)的测定, 31 种 PFAS 的仪器检 出限(IDL)为 $0.10~\rm ng/mL{\sim}1.93~\rm ng/mL$,详见附录 B。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件,仅该日期对应的版本适用于本文件,不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 6680 液体化工产品采样通则

3 术语和定义

下列术语和定义适用于本文件。

3.1

全氟和多氟烷基化合物(per- and polyfluoroalkyl substances,PFAS)

含有至少一个全氟化甲基或亚甲基碳原子(且其不与 H、Cl、Br 或 I 相连)的有机物。

3.2

前驱体 (precursor)

指在环境能够缓慢转化为全氟烷基羧酸(PFCA)或全氟烷基磺酸(PFSA)的化合物。

3.3

总可氧化前驱体(total oxidizable precursors,TOP)

指在碱性溶液热活化过硫酸盐氧化条件下能够被转化为 PFCA 或 PFSA 的化合物。

4 方法原理

表面活性剂经水溶液稀释、滤膜过滤,用液相色谱-三重四极杆质谱直接测定其中的 PFAS,根据特征离子对与保留时间定性,同位素稀释法和内标法定量。

表面活性剂经水溶液稀释,用碱性溶液热活化过硫酸盐氧化前处理,再经滤膜过滤后,用液相色谱-三重四极杆质谱测定其中的 PFAS,根据特征离子对与保留时间定性,同位素稀释法和内标法定量。

对比直接测定和氧化后测定所得到的 11 种 PFCA 和 7 种 PFSA 的总量,将其增量作为 TOP 指示值。

5 干扰和消除

- 5.1 分析过程中含氟聚合物(如聚四氟乙烯)器皿的使用可能对测定产生干扰,样品采集和 前处理过程中应避免使用含氟聚合物材质的器皿。
- 5.2 液相色谱系统可能含有 PFAS,可通过使用捕集柱分离样品中 PFAS 与仪器背景干扰,捕集柱安装在流动相混合器和进样器内六通阀之间;也可将液相色谱系统中聚四氟乙烯材质配件更换为聚醚醚酮或不锈钢材质。

6 材料和试剂

- 6.1 材料
- 6.1.1 采样瓶: 聚丙烯材质, 1 L。
- 6.1.2 离心管: 聚丙烯材质, 3 mL 和 15 mL。
- 6.1.3 进样瓶:聚丙烯材质, 0.3 mL 和 1.5 mL,带不含聚四氟乙烯(PTFE)衬垫的螺旋盖。
- 6.1.4 移液器枪头: 20 μL、200 μL 和 1 mL
- 6.1.5 一次性注射器: 聚丙烯材质, 1 mL
- 6.1.6 量筒:玻璃,100 mL 和 1000mL
- 6.1.7 容量瓶: 玻璃, 10 mL 和 100 mL
- 6.1.8 烧杯:玻璃,100 mL
- 6.1.9 玻璃棒

6.1.10 针头式过滤器: 尼龙材质滤膜, 0.2 μm。

注: 可使用其他被证明合适的过滤头。

6.2 试剂

除非另有说明,分析时均使用符合国家标准的分析纯试剂,实验用水为不含目标化合物的纯水。

- 6.2.1 甲醇(CH₃OH):色谱纯。
- 6.2.2 乙酸 (CH₃COOH): 分析纯。
- 6.2.3 氮气: 纯度≥99.9%。
- 6.2.4 PFAS 标准贮备液: $\rho = 1.00 \, \mu \text{g/mL}$ 。

市售有证标准溶液,也可用单个标准溶液配制,按照标准溶液证书要求或参照制造商产 品说明保存,使用前应恢复至室温并摇匀。

6.2.5 定量内标贮备液: ρ = 50 μg/mL

内标为同位素标记物 ¹³C₄ PFBA(全氟丁酸)、¹³C₅ PFPeA(全氟戊酸)、¹³C₂ PFHxA(全氟己酸)、¹³C₄ PFHpA(全氟庚酸)、¹³C₄ PFOA(全氟辛酸)、¹³C₅ PFNA(全氟壬酸)、¹³C₂ PFDA(全氟癸酸)、¹³C₂ PFUnA(全氟十一酸)、¹³C₂ PFDoA(全氟十二酸)、¹³C₃ PFHxS(全氟己基磺酸)、¹³C₈ PFOS(全氟辛基磺酸)、¹³C₂ 6:2 FTS(1H,1H,2H,2H-全氟辛基磺酸)、¹³C₈ PFOSA(全氟辛基磺酰胺)和 ¹³C₃ HFPO-DA(六氟环氧丙烷二聚酸),市售有证标准溶液,按照标准溶液证书要求保存,使用前应恢复至室温并摇匀。

6.2.6 定量内标混合使用液: $\rho = 0.5 \, \mu \text{g/mL}$

将定量内标贮备液(6.2.5)按需要用甲醇(6.2.1)稀释。定量内标工作液密封、避光,于 0 $\mathbb{C}\sim 4$ \mathbb{C} 保存。使用前应恢复至室温并摇匀。

6.2.7 进样内标贮备液: ρ = 50 μg/mL

进样内标为同位素标记物 ¹³C₂ PFOA, 市售有证标准溶液, 按照标准溶液证书要求保存, 使用前应恢复至室温并摇匀。

6.2.8 进样内标使用液: ρ = 0.5 μg/mL

将进样内标贮备液(6.2.7)按需要用甲醇(6.2.1)稀释。进样内标使用液密封、避光,于 0 $\mathbb{C}\sim 4$ \mathbb{C} 保存。使用前应恢复至室温并摇匀。

6.2.9 氢氧化钠 (NaOH): 分析纯。

- 6.2.10 过硫酸钾 (K₂S₂O₈): 分析纯。
- 6.2.11 乙酸铵 (CH₃COONH₄): 分析纯。
- 6.2.12 NaOH 水溶液: c(NaOH) = 10 mol/L

称取 4.00 g NaOH (6.2.9), 加入水溶解, 最终定容至 10 mL, 混匀, 临用现配。

6.2.13 过硫酸钾水溶液: $c(K_2S_2O_8) = 175 \text{ mmol/L}$

称取 4.73 g $K_2S_2O_8$ (6.2.10) ,加入水溶解,最终定容至 100 mL,混匀,临用现配。

6.2.14 乙酸甲醇溶液:

用乙酸 (6.2.2) 和甲醇 (6.2.1) 按 4:100 的体积比混合,临用现配。

6.2.15 乙酸铵水溶液: c(CH₃COONH₄) = 10 mmol/L

称取 0.77 g 醋酸铵 (6.2.11),加入 1000 mL水,混匀,临用现配。

7 仪器和设备

- 7.1 液相色谱-三重四极杆质谱仪:液相色谱仪具备梯度洗脱功能,三重四极杆质谱仪配有电喷雾离子源,具备多反应监测功能。
- 7.2 色谱柱:填料为十八烷基硅烷键合硅胶,填料粒径为 3.5 μm,柱长为 150 mm,内径为 2.1 mm。或其他性能相近的色谱柱。
- 7.3 捕集柱:填料为十八烷基硅烷键合硅胶,填料粒径为 3.5 μm,柱长为 50 mm,内径为 4.6 mm。
- 7.4 涡旋振荡混合器。
- 7.5 分析天平: 实际分度值为 0.1 mg。

8 样品收集和保存

按照 GB/T 6680 的相关规定采集样品。样品采集应具有代表性,保证样品与总体一致。将样品置于采样瓶(6.1.1)中,密封、避光,0 ℃~4 ℃保存,样品应尽快送往实验室,14 d 内完成样品的制备。采集样品时应同时采集全程序空白样品。用采样瓶(6.1.1)装满水带至采样现场,采样时将水转移至另一个采样瓶(6.1.1)中,作为全程序空白样品,随实际样品一起保存并运输至实验室。

9 样品的制备

9.1 直接分析

样品的总稀释倍数为 20000 倍,总稀释倍数根据样品浓度确定,一般建议上机总稀释倍数为 20000 倍,对于浓度更高或含量比较低的样品,可酌情增减总稀释倍数,一般的总稀释倍数范围为 2000 倍~200000 倍。

用水将样品逐级稀释(每次不超过 50 倍),稀释至 10000 倍,取 0.25 mL 稀释后的样品,加入 $10~\mu$ L 定量内标混合使用液(6.2.6),涡旋混匀。再加入 $0.25~\mu$ L 甲醇(6.2.1),以及 $10~\mu$ L 进样内标混合使用液(6.2.8),涡旋混匀。用一次性注射器(6.1.6)将试样溶液通过 $0.2~\mu$ m 的针头式过滤器(6.1.10)过滤至 $1.5~\mu$ L 的样品瓶(6.1.3)中,移取 $0.1~\mu$ L 过滤后的试样溶液进行 LC-MS/MS 分析。

9.2 前驱体分析

样品的总稀释倍数为 400000 倍,总稀释倍数根据样品浓度确定,一般建议上机总稀释倍数为 400000 倍,对于浓度更高或含量比较低的样品,可酌情增减总稀释倍数,一般的总稀释倍数范围为 400000 倍~800000 倍。

取 0.5 mL 稀释后的样品(9.1),先加入 0.15 mL 的 NaOH 水溶液(6.2.12),再加入 3.43 mL 的过硫酸钾水溶液(6.2.13),最后用水(6.2.4)定容至 10 mL,使 NaOH 和 $K_2S_2O_8$ 的浓度分别为 150 mmol/L 和 60 mmol/L,涡旋混匀。在 85 °C 下水浴加热处理 6 小时,将氧 化后的样品立即用乙酸甲醇溶液(6.2.14)将 pH 调至 6 左右,并在冰水中冷却至室温。应 在 48 h 内尽快完成后续分析步骤。

取 0.25 mL 活化后的 TOP 样品,加入 10 µL 定量内标混合使用液(6.2.6),涡旋混匀。加入 0.25 mL 甲醇(6.2.1),并加入 10 µL 进样内标混合使用液(6.2.8),涡旋混匀。用一次性注射器(6.1.6)将试样溶液通过 0.2 µm 的针头式过滤器(6.1.10)过滤至 1.5 mL 的样品瓶(6.1.3)中,移取 0.1 mL 过滤后的试样溶液进行 LC-MS/MS 分析。

9.3 空白试验制备

用水代替样品,按照与直接分析(9.1)和前驱体分析(9.2)的试样制备的相同步骤制备实验室空白试样。

10 仪器测定

10.1 仪器参考条件

10.1.1 液相色谱参考条件

流动相 A 为乙酸铵水溶液(6.2.15),流动相 B 为甲醇(6.2.1);柱温为 35 °C;流速为 0.3 mL/min。进样量为 $5 \mu \text{L}$;梯度洗脱条件如表 1 所示。

时间 (min) 流动相 A(%) 流动相 B(%) 1.00 70 30 3.00 40 60 5 8.00 95 5 14.00 95 70 14.01 30 70 18.00 30

表 1 梯度洗脱条件

10.1.2 质谱参考条件

质谱采用电喷雾离子源(ESI),负离子电离模式,多反应监测方式(MRM)。毛细管电压为 3500 V,鞘气加热温度为 350 ℃,鞘气流速为 7 L/min。目标物和同位素内标的质谱参数如附录 C 所示,保留时间如附录 D 所示。

10.2 标准系列的配制和测定

样品采用同位素稀释法和内标法进行定量,标准系列浓度分别为0.5 ng/mL、1.0 ng/mL、2.0 ng/mL、5.0 ng/mL、5.0 ng/mL、10 ng/mL、50 ng/mL、100 ng/mL、250 ng/mL(仅针对除4:2 FTS、6:2 FTS 和 8:2 FTS 之外的其他 28 种 PFAS),定量内标和进样内标的浓度为 10 ng/mL。按照色谱参考条件(10.1.1)和质谱参考条件(10.1.2),由低到高依次进行 LC-MS/MS分析,记录各目标化合物、定量内标、进样内标的保留时间和定量离子峰面积,得到标准曲线,R²应大于 0.99。

10.3 试样测定

按照与标准系列的配制与测定(10.2)相同的仪器条件测定直接分析试样(9.1)和前驱 体分析试样(9.2)。

10.4 空白试验

按照与试样测定(10.3)相同的仪器条件测定实验室空白试样(9.3)。

11 结果计算与表示

11.1 平均相对响应因子计算

目标化合物 i 的相对响应因子按照公式(1)计算。

$$RRF_{s,ij} = \frac{A_{s,ij}}{A_{es,ij}} \times \frac{\rho_{es,ij}}{\rho_{s,ii}} \tag{1}$$

式中: $RRF_{s,ij}$ —标准系列中第j点目标化合物i的相对响应因子;

 $A_{s,ij}$ —标准系列中第j点目标化合物i定量离子的峰面积;

 $A_{es,ii}$ —标准系列中第i点目标化合物i对应定量内标定量离子的峰面积;

 $\rho_{es.ii}$ —标准系列中第 i 点目标化合物 i 对应定量内标的浓度, ng/mL;

 $\rho_{s,ij}$ —标准系列中第 j 点目标化合物 i 的浓度,ng/mL。

目标化合物 i 的平均相对响应因子按照公式(2)计算。

$$\overline{RRF}_{s,i} = \frac{\sum_{j=1}^{n} RRF_{s,ij}}{n} \tag{2}$$

式中: $\overline{RRF}_{s,i}$ —目标化合物 i 的平均相对响应因子;

 $RRF_{s,ij}$ —标准系列中第 i 点目标化合物 i 的相对响应因子;

n—标准系列点数。

目标化合物 i 对应定量内标的相对响应因子按照公式(3)计算。

$$RRF_{es,ij} = \frac{A_{es,ij}}{A_{is,i}} \times \frac{\rho_{ls,j}}{\rho_{es,ij}} \tag{3}$$

式中: $RRF_{es,ij}$ —标准系列中第j点目标化合物i对应定量内标的相对响应因子;

 $A_{es,ij}$ —标准系列中第j点目标化合物i对应定量内标定量离子的峰面积;

 A_{isi} —标准系列中第 i 点进样内标定量离子的峰面积;

 $\rho_{is,j}$ —标准系列中第j点进样内标的浓度, ng/mL;

 $\rho_{es,ii}$ —标准系列中第 j 点目标化合物 i 对应定量内标的浓度,ng/mL。

目标化合物 i 对应定量内标的平均相对响应因子按照公式(4)计算。

$$\overline{RRF}_{es,i} = \frac{\sum_{j=1}^{n} RRF_{es,ij}}{n} \tag{4}$$

式中: $\overline{RRF}_{es.i}$ —目标化合物 i 对应定量内标的平均相对响应因子;

 $RRF_{es,ij}$ —标准系列中第j点目标化合物i对应定量内标的相对响应因子;n—标准系列点数。

11.2 色谱峰确认

在色谱图上,对信噪比(S/N)大于 3 的色谱峰视为有效峰,PFHxA、PFOA、PFHxS 和 PFOS 直链和支链异构体的色谱峰不必分离,计算峰面积之和。

11.3 定性分析

根据特征离子对与保留时间定性分析。每种目标化合物设定一对或两对特征离子对,如 附录 C 所示。并且样品中目标化合物保留时间应与标准溶液一致,偏差在±5%以内。

11.4 定量分析

11.4.1 试样中目标化合物的浓度计算

试样中目标化合物 i 的浓度按公式(5)计算。

$$\rho_{c,i} = \frac{A_{c,i}}{A_{es,i}} \times \frac{\rho_{es}}{\overline{RRF}_{s,i}} \tag{5}$$

式中: $\rho_{c,i}$ —试样中目标化合物 i 的浓度, ng/mL;

 $A_{c,i}$ —试样中目标化合物 i 定量离子的峰面积;

 A_{esi} —试样中目标化合物 i 对应定量内标定量离子的峰面积:

 ρ_{es} —定量内标添加的浓度, ng/mL;

 \overline{RRF}_{si} —目标化合物 i 的平均相对响应因子。

11.4.2 样品中目标化合物浓度的计算

样品中目标化合物 i 的浓度(以对应酸的浓度计)按照公式(6)计算。

$$C_i = \frac{\rho_{c,i} \times V \times D}{m} \times \frac{M_{a,i}}{M_{s,i}} \tag{6}$$

式中: C_i —样品中目标化合物 i 的浓度(以对应酸的浓度计), $\mu g/kg$;

 $\rho_{c,i}$ —试样中目标化合物 i 的浓度, ng/mL;

V—试样体积,mL;

m—取样量, g;

D—总稀释倍数;

 $M_{a,i}$ —目标化合物 i 对应酸的分子量;

 $M_{s,i}$ —标准溶液中目标化合物 i 对应盐的分子量。

11.4.3 TOP 指示值的计算

TOP 指示值按照公式 (7) 根据直接分析和前驱体分析样品中 11 种 PFCA 和 7 种 PFSA 浓度总量的差值计算。

$$C_{TOP} = C_0 - C_Z \tag{7}$$

式中: C_{TOP} —TOP 指示值, μ g/kg;

 C_Q —前驱体分析样品中 PFCA 和 PFSA 浓度总量, $\mu g/kg$;

 C_Z —直接分析样品中 PFCA 和 PFSA 浓度总量, $\mu g/kg$ 。

11.4.4 试样中定量内标回收率的计算

试样中目标化合物 i 对应定量内标的回收率按公式(8)计算。

$$\omega_{es,i} = \frac{A_{es,i}}{A_{is}} \times \frac{\rho_{is}}{\rho_{es} \times \overline{RRF}_{es,i}} \times 100$$
 (8)

式中: $\omega_{es.i}$ —试样中目标化合物 i 对应定量内标的回收率, %;

 $A_{es,i}$ —试样中目标化合物 i 对应定量内标定量离子的峰面积;

 A_{is} —试样中进样内标定量离子的峰面积;

 ρ_{is} —进样内标添加的浓度, ng/mL;

 ρ_{es} —定量内标添加的浓度, ng/mL;

 $\overline{RRF}_{es.i}$ —目标化合物 i 对应定量内标的平均相对响应因子。

11.4.5 结果表示

测定结果最多保留3位有效数字。

12 准确度

12.1 精密度

5 家实验室对表面活性剂稀释液和有证标准物质稀释液实际样品加标浓度分别为 20 μg/kg 和 30 μg/kg 的统一样品进行了 6 次平行测定和统计。实验室内表面活性剂稀释液和加标稀释液相对标准偏差为 0.4%~155%、0.8%~446%;有证标准物质稀释液和加标稀释液相对标准偏差分别为 1.4%~245%、0.5%~41.4%。

12.2 正确度

5 家实验室对表面活性剂稀释液和有证标准物质稀释液实际样品加标浓度分别为 20 μg/kg 和 30 μg/kg 的统一样品进行了 6 次平行测定和统计。实验室内加标回收率分别为 25.2%~362%、7.0%~265%。实验室间加标回收率平均值分别为 42.0%~148 %、35.9%~

160%。

5 家实验室对表面活性剂实际样品统一样品进行了测定和统计,实验室间相对标准偏差 范围为 6.1%~41.5%。

13 质量保证和质量控制

13.1 空白试验

每20个或每批次样品(少于20个)至少分析1个全程序空白和1个实验室空白,空白测试结果应低于仪器检出限。

13.2 校准

相对响应因子的相对标准偏差应≤20%; 否则应查找原因,重新测定标准系列并计算相对响应因子。选择标准曲线中间点浓度的标准溶液连续校准,每分析20个或每批次样品(少于20个)连续校准1次,测定结果相对误差应在±20%以内。

13.3 平行样

每 20 个或每批次样品(少于 20 个)至少分析 1 个平行样,平行样测定结果的相对偏差 应在±30%以内。

13.4 基体加标

每20个或每批次样品(少于20个)至少分析1个基体加标样品,加标回收率应在70%~130%之间。

13.5 定量内标回收率

定量内标回收率应在40%~150%之间。

14 废物处置

实验中产生的废物应集中收集,分类保存,并做好相应的标识,依法处置。

15 注意事项

因玻璃容器可能吸附目标化合物,采样和分析过程中应避免使用玻璃材质器皿。

附录 A (资料性附录) 目标化合物与同位素内标的信息

本方法测定的 31 种 PFAS 与同位素内标的基本信息如表 A.1 所示。

表 A. 1 31 种 PFAS 与同位素内标的基本信息

序号	物质名称	英文缩写	CAS 号	分子式	相对分子质量	定量内标	进样内标
1	全氟丁酸 Perfluorobutanoic acid	PFBA	375-22-4	C ₄ F ₇ O ₂ H	213.9	¹³ C ₄ PFBA	
2	全氟戊酸 Perfluoropentanoic acid	PFPeA	2706-90-3	C₅F ₉ O ₂ H	263.91	¹³ C ₅ PFPeA	
3	全氟己酸 Perfluorohexanoic acid	PFHxA	307-24-4	$\mathrm{C_6F_{11}O_2H}$	313.92	¹³ C ₂ PFHxA	¹³ C ₂ PFOA
4	全氟庚酸 Perfluoroheptanoic acid	PFHpA	375-85-9	$\mathrm{C_{7}F_{13}O_{2}H}$	363.93	¹³ C ₄ PFHpA	C ₂ FFOA
5	全氟辛酸 Perfluorooctanoic acid	PFOA	335-67-1	$\mathrm{C_8F_{15}O_2H}$	413.93	¹³ C ₄ PFOA	
6	全氟壬酸 Perfluorononanoic acid	PFNA	375-95-1	C ₉ F ₁₇ O ₂ H	464.08	¹³ C ₅ PFNA	

序号	物质名称	英文缩写	CAS 号	分子式	相对分子质量	定量内标	进样内标
7	全氟癸酸 Perfluorodecanoic acid	PFDA	335-76-2	$C_{10}F_{19}O_2H$	514.22	¹³ C ₂ PFDA	
8	全氟十一酸 Perfluoroundecanoic acid	PFUnA	2058-94-8	$C_{11}F_{21}O_2H$	564.1	¹³ C ₂ PFUnA	
9	全氟十二酸 Perfluorododecanoic acid	PFDoA	307-55-1	$C_{12}F_{23}O_2H$	614.11	¹³ C ₂ PFDoA	
10	全氟十三酸 Perfluorotridecanoic acid	PFTrDA	72629-94-8	$C_{13}F_{25}O_2H$	664.11	¹³ C ₂ PFDoA	¹³ C ₂ PFOA
11	全氟十四酸 Perfluorotetradecanoic acid	PFTeDA	376-06-7	$C_{14}F_{27}O_2H$	714.11	¹³ C ₂ PFDoA	*C2 FFOA
12	全氟丁基磺酸 Perfluorobutanesulfonic acid	PFBS	375-73-5	C ₄ F ₉ SO ₃ H	299.92	¹³ C ₃ PFHxS	
13	全氟戊基磺酸 Perfluoropentanesulfonic acid	PFPeS	2706-91-4	C₅F₁₁SO₃H	350.11	¹³ C ₃ PFHxS	
14	全氟己基磺酸 Perfluorohexanesulfonic acid	PFHxS	355-46-4	C ₆ F ₁₃ SO ₃ H	399.97	¹³ C ₃ PFHxS	

序号	物质名称	英文缩写	CAS 号	分子式	相对分子质量	定量内标	进样内标
15	全氟庚基磺酸	PFHpS	375-92-8	C ₇ F ₁₅ SO ₃ H	449.98	¹³ C ₈ PFOS	
	Perfluoroheptanesulfonic acid	111105	373-72-6	C ₇ F ₁₅ SO ₃ FI	777.70	103	
16	全氟辛基磺酸	PFOS	1763-23-1	C ₈ F ₁₇ SO ₃ H	499.99	¹³ C ₈ PFOS	
10	Perfluorooctanesulfonic acid	Pros	1/03-23-1	C ₈ F ₁₇ SO ₃ H	499.99	"C ₈ Pros	
17	全氟壬基磺酸	PFNS	69250 12 1	C E SO H	550.14	¹³ C ₈ PFOS	
1 /	Perfluorononanesulfonic acid	PFNS	68259-12-1	$C_9F_{19}SO_3H$	330.14	C ₈ PFOS	
18	全氟癸基磺酸	PFDS	335-77-3	C ₁₀ F ₂₁ SO ₃ H	600.01	¹³ C ₈ PFOS	
10	Perfluorodecanesulfonic acid	PFDS	333-11-3	C101 215O311	000.01	0,1105	¹³ C ₂ PFOA
19	1H,1H,2H,2H-全氟己基磺酸	4:2 FTS	27610 02 9	CHESOH	351.14	¹³ C ₂ 6:2 FTS	C ₂ PFOA
19	1H,1H,2H,2H-Perfluorohexanesulphonic acid	4.2 F13	27619-93-8	C ₆ H ₄ F ₉ SO ₃ H	331.14	13C ₂ 6:2 F1S	
20	1H,1H,2H,2H-全氟辛基磺酸	6:2 FTS	27619-97-2	CHESOH	429 17	¹³ C ₂ 6:2 FTS	
20	1H,1H,2H,2H-Perfluorooctanesulphonic acid	0.2 F13	2/019-9/-2	$C_8H_4F_{13}SO_3H$	428.17	C ₂ 0:2 F1S	
21	1H,1H,2H,2H-全氟癸基磺酸	8:2 FTS	39108-34-4	C HE SO H	528.0	13C 6.2 ETC	
21	1H,1H,2H,2H-Perfluorodecanesulphonic acid	0.2113	33100-34-4	$C_{10}H_4F_{17}SO_3H$	528.0	¹³ C ₂ 6:2 FTS	
22	全氟辛基磺酰胺	PFOSA	754-91-6	CHONSE	400 15	13C DEOSA	
22	Perfluorooctanesulfonamide	FFOSA	/34-91-6	$C_8H_2O_2NS_2F_{17}$	499.15	¹³ C ₈ PFOSA	

序号	物质名称	英文缩写	CAS 号	分子式	相对分子质量	定量内标	进样内标
23	N-甲基全氟辛基磺酰胺 N-Methyl-perfluorooctanesulfonamide	NMeFOSA	31506-32-8	C ₉ H ₄ O ₂ NSF ₁₇	513.03	¹³ C ₈ PFOSA	
24	N-乙基全氟辛基磺酰胺 N-Ethyl- perfluorooctanesulfonamide	NEtFOSA	4151-50-2	C ₁₀ H ₆ O ₂ NSF ₁₇	527.06	¹³ C ₈ PFOSA	
25	N-甲基全氟辛基磺酰胺乙醇 N-Methyl- perfluorooctanesulfonamidoethanol	NMeFOSE	24448-09-7	C ₁₁ H ₈ O ₃ NSF ₁₇	557.08	¹³ C ₈ PFOSA	
26	N-乙基全氟辛基磺酰胺乙醇 N-Ethyl- perfluorooctanesulfonamidoethanol	NEtFOSE	1691-99-2	C ₁₂ H ₁₀ O ₃ NSF ₁₇	571.11	¹³ C ₈ PFOSA	¹³ C ₂ PFOA
27	9-氯-3-氧杂全氟壬烷磺酸 9-Chlorohexadecafluoro-3-oxanonane-1-sulfonic acid	9Cl-PF3ONS	756426-58-1	C ₈ ClF ₁₆ SO ₄ H	532.60	¹³ C ₃ HFPO-	···C ₂ PPOA
28	11-氯-3-氧杂全氟十一烷磺酸 11-Chloroeicosafluoro-3-oxaundecane-1-sulfonic acid	11Cl- PF3OUdS	763051-92-9	C ₁₀ ClF ₂₀ SO ₄ H	632.60	¹³ C ₃ HFPO-	
29	六氟环氧丙烷二聚酸 Hexafluoropropylene oxide dimer acid	HFPO-DA	13252-13-6	C ₆ F ₁₁ O ₃ H	330.05	¹³ C ₃ HFPO-	

序号	物质名称	英文缩写	CAS 号	分子式	相对分子质量	定量内标	进样内标
30	4,8-二氧-3H-全氟壬酸	ADONA	919005-14-4	C ₇ H ₂ F ₁₂ O ₄	378.1	¹³ C ₃ HFPO-	
	4,8-Dioxa-3H-perfluorononanoic acid	ADONA				DA	13C ₂ PFOA
21	全氟壬烯氧基苯磺酸钠	ODS	97.56.9	C HE SO No	664.2	13C DEOC	C ₂ PFOA
31	Sodium perfluorononyloxybenzenesulfonate	OBS	87-56-8	C ₁₅ H ₄ F ₁₉ SO ₄ Na	664.2	¹³ C ₈ PFOS	

附录 B (规范性附录) 仪器检出限

仪器检出限如表 B.1 所示。

表 B.1 仪器检出限

序号	化合物	仪器检出限 (ng/mL)
1	PFBA	0.32
2	PFPeA	0.34
3	PFHxA	0.26
4	PFHpA	0.22
5	PFOA	0.29
6	PFNA	0.33
7	PFDA	0.32
8	PFUnA	0.33
9	PFDoA	0.32
10	PFTrDA	0.19
11	PFTeDA	0.25
12	PFBS	0.49
13	PFPeS	0.36
14	PFHxS	0.54
15	PFHpS	0.39
16	PFOS	0.10
17	PFNS	0.37
18	PFDS	0.66
19	9Cl-PF3ONS	0.19
20	11Cl-PF3OUdS	0.38
21	4:2 FTS	0.30
22	6:2 FTS	0.62
23	8:2 FTS	1.12

序号	化合物	仪器检出限 (ng/mL)
24	HFPO-DA	0.43
25	ADONA	0.26
26 OBS		1.84
27	PFOSA	0.34
28	NMeFOSA	1.57
29	NEtFOSA	1.63
30	NMeFOSE	1.88
31	NEtFOSE	1.93

附录 C (资料性附录) 目标化合物和同位素内标的质谱参数

目标化合物和同位素内标的质谱参数如表 C.1 所示。

表 C.1 质谱参数

表 C. 1							
序号	化合物	母离子	子离子	锥孔电压	碰撞电压		
/, 3	16412	(Da)	(Da)	(V)	(V)		
1	PFBA	212.9	168.9	60	8		
2	PFPeA	262.9	218.9	61	5		
3	PFHxA	312.9	268.9	60	5		
4	PFHxA	312.9	119.0	60	21		
5	PFHpA	362.8	318.8	60	5		
6	PFHpA	362.8	168.9	60	17		
7	PFOA	413.1	368.9	65	5		
8	PFOA	413.1	168.9	65	17		
9	PFNA	462.9	418.8	60	5		
10	PFNA	462.9	218.9	60	17		
11	PFDA	513.1	468.8	50	9		
12	PFDA	513.1	268.9	50	17		
13	PFUnA	563.1	518.9	88	9		
14	PFUnA	563.1	493.2	88	29		
15	PFDoA	613.1	568.9	103	9		
16	PFTrDA	663.1	618.9	93	9		
17	PFTrDA	663.1	168.9	93	29		
18	PFTeDA	713.1	668.9	88	13		
19	PFBS	298.8	98.9	128	33		
20	PFBS	298.8	80.0	128	37		
21	PFPeS	348.8	98.9	136	37		
22	PFPeS	348.8	80.0	136	45		
23	PFHxS	398.8	98.9	161	41		

₽	/I. A the	母离子	子离子	锥孔电压	碰撞电压
序号	化合物	(Da)	(Da)	(V)	(V)
24	PFHxS	398.8	80.0	161	45
25	PFHpS	448.8	98.9	166	45
26	PFHpS	448.8	80.0	166	49
27	PFOS	498.8	98.9	172	45
28	PFOS	498.8	80.0	172	50
29	PFNS	548.9	98.9	191	53
30	PFNS	548.9	80.0	191	57
31	PFDS	598.8	98.9	196	53
32	PFDS	598.8	80.0	196	61
33	9Cl-PF3ONS	530.7	350.9	136	29
34	9Cl-PF3ONS	530.7	83.0	136	29
35	11Cl-PF3OUdS	630.9	450.9	136	35
36	4:2 FTS	327.1	306.9	123	21
37	4:2 FTS	327.1	81.0	123	29
38	6:2 FTS	427.2	406.9	128	25
39	6:2 FTS	427.2	81.0	128	37
40	8:2 FTS	527.2	506.8	171	29
41	8:2 FTS	527.2	81.0	171	41
42	HFPO-DA	329	285.0	55	5
43	ADONA	376.9	250.9	80	10
44	ADONA	376.9	84.9	80	18
45	OBS	602.9	171.9	130	40
46	OBS	602.9	108.0	130	40
47	PFOSA	498.14	168.9	136	33
48	PFOSA	498.14	78.0	136	37
49	NMeFOSA	512.16	218.9	128	25
50	NMeFOSA	512.16	168.9	128	29

₽ □	/1. A skin	母离子	子离子	锥孔电压	碰撞电压
序号	化合物	(Da)	(Da)	(V)	(V)
51	NEtFOSA	526.19	218.9	128	25
52	NEtFOSA	526.19	168.9	128	29
53	NMeFOSE	615.7	59.1	98	13
54	NEtFOSE	629.8	59.1	103	13
55	¹³ C ₄ PFBA	217.03	171.9	60	5
56	¹³ C ₅ PFPeA	268.04	222.9	60	5
57	¹³ C ₂ PFHxA	315.04	269.9	60	5
58	¹³ C ₄ PFHpA	367.05	321.9	60	5
59	¹³ C ₄ PFOA	417.06	371.8	50	5
60	¹³ C ₅ PFNA	468.07	422.9	60	5
61	¹³ C ₂ PFDA	515.07	469.9	60	5
62	¹³ C ₂ PFUnA	565.0	519.8	100	8
63	¹³ C ₂ PFDoA	615.0	570.0	120	2
64	¹³ C ₃ PFHxS	401.8	98.9	156	41
65	¹³ C ₃ PFHxS	401.8	80.0	156	49
66	¹³ C ₈ PFOS	506.9	98.9	196	49
67	¹³ C ₈ PFOS	506.9	80.0	196	77
68	¹³ C ₂ 6:2FTS	429.2	408.9	128	25
69	¹³ C ₂ 6:2FTS	429.2	81	128	41
70	¹³ C ₈ PFOSA	506.1	78	156	37
71	¹³ C ₃ HFPO-DA	332	286.7	120	69
72	¹³ C ₃ HFPO-DA	184.9	118.9	93	17
73	¹³ C ₂ PFOA	414.9	370	70	5

附录 D (资料性附录) 31 种 PFAS 保留时间

本方法测定的 31 种 PFAS 保留时间如表 D.1 所示

表 D. 1 31 种 PFAS 保留时间示例

序号	化合物	相对保留时间(min)
1	PFBA	3.86
2	PFPeA	9.01
3	PFHxA	10.24
4	PFHpA	10.95
5	PFOA	11.50
6	PFNA	11.95
7	PFDA	12.37
8	PFUnA	12.69
9	PFDoA	13.01
10	PFTrDA	13.30
11	PFTeDA	13.59
12	PFBS	9.37
13	PFPeS	10.24
14	PFHxS	10.98
15	PFHpS	11.50
16	PFOS	11.91
17	PFNS	12.30
18	PFDS	12.65
19	9Cl-PF3ONS	12.14
20	11Cl-PF3OUdS	12.81
21	4:2 FTS	10.17
22	6:2 FTS	11.47
23	8:2 FTS	12.37
24	HFPO-DA	10.47

T/ACEF XXXX—2024

序号	化合物	相对保留时间(min)
25	ADONA	11.01
26	OBS	12.52
27	PFOSA	13.02
28	NMeFOSA	13.83
29	NEtFOSA	14.15
30	NMeFOSE	13.85
31	NEtFOSE	14.14

22