团 体 标

T/NJ 1523—202X

井用潜水电泵

Submersible electric pumps for deep well

(公示稿)

2024-XX-XX发布 2024-XX-XX 实施

中国农业机械学会 发布

前 言

本文件按照GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国农业机械学会提出。

本文件由全国农业机械标准化技术委员会(SAC/TC 201)归口。

本文件起草单位:新界泵业(浙江)有限公司、浙江大元泵业股份有限公司、利欧集团浙江泵业有限公司、浙江东音科技有限公司、温岭市产品质量检验所、浙江丰球克瑞泵业有限公司、温岭利欧电子科技有限公司、浙江老百姓泵业有限公司。

本文件主要起草人: 许龙波、桂建辉、葛杰、胡小军、应荣军、吴刚、王国军、陈建新、方建伟。

井用潜水电泵

1 范围

本文件规定了井用潜水电泵的术语和定义、型式、型号和基本参数及连接尺寸、技术要求、试验方法、检验规则、标志、包装、贮存和运输。

本文件适用于潜入水中提取清水的井用潜水电泵(以下简称"电泵")的制造。

2 规范性引用文件

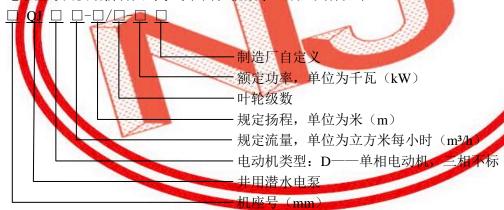
下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB/T 191 包装储运图示标志
- GB/T755 旋转电机 定额与性能
- GB/T 1176 铸造铜及铜合金
- GB/T 348 球墨铸铁件
- GB/T 1971 旋转电机 线端标志与旋转方向
- GB/T 2423.4—2008 电工电子产品环境试验 第2部分: 试验方法 试验Db: 交变湿热 (12 h+12 h 循环)
 - GB/T 2816 井用潜水泵
 - GB/T 2828.1—2012 计数抽样检验程序 第1部分:按接收质量限(AQL)检索的逐批检验抽样计划
 - GB/T 3098.6 紧固件机械性能 不锈钢螺栓、螺钉和螺柱
 - GB/T 4942-2021 旋转电机整体结构的防护等级(IP代码) 分级
 - GB/T 5013.4 额定电压450/750V及以下橡皮绝缘电缆 第4部分: 软线和软电缆
 - GB/T 5023.5 额定电压450/750V及以下聚氯乙烯绝缘电缆 第5部分: 软电缆(软线)
 - GB/T 9239.1-2006 机械振动 恒态(刚性)转子平衡品质要求 第1部分:规范与平衡允差的检验
 - GB/T 9439 灰铸铁件
 - GB 10395.8 农林拖拉机和机械 安全技术要求 第8部分:排灌泵和泵机组
 - GB 10396 农林拖拉机和机械、草坪和园艺动力机械 安全标志和危险图形 总则
 - GB/T 12785-2014 潜水电泵 试验方法
 - GB/T 13306 标牌
 - GB/T 20878 不锈钢和耐热钢 牌号及化学成分
 - JB/T 5673-2015 农林拖拉机及机具涂漆 通用技术条件
 - JB/T 6880.1 泵用灰铸铁
 - JB/T 6880.2 泵用铸件 第2部分: 泵用铸钢件
 - JB/T 6880.3 泵用铸件 第3部分: 泵用抗磨蚀白口铸铁件
 - JB/T 8735.2 额定电压450/750V及以下橡皮绝缘软线和软电缆 第2部分:通用橡套软电缆
 - JB/T 8735.3 额定电压450/750V及以下橡皮绝缘软线和软电缆 第3部分:橡皮绝缘编织软电线
 - JB/T 11923 潜水电泵 可靠性考核评定方法

3 术语和定义

GB/T 2816 界定的术语和定义适用于本文件。

4 型式、型号和基本参数及连接尺寸

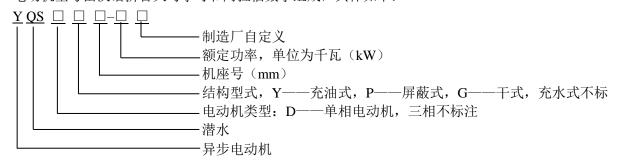

4.1 型式

- 4.1.1 电泵由电动机与泵组成,立式结构,电动机与泵连接方式为直连或同轴。
- 4.1.2 电泵叶轮型式分为离心式或混流式。
- 4.1.3 叶轮材质为塑料或不锈钢冲压件。
- 4.1.4 从出水端看应为逆时针方向旋转。
- 4. 1. 5 电泵的外壳防护等级为 GB/T 4942—2021 中规定的 IPX8。特殊要求的防护等级,由供需双方按 GB/T 4942—2021 的规定协商确定。
- 4.1.6 电泵的定额是以连续工作制(S1)为基准的连续定额。

4.2 型号

4.2.1 电泵型号

电泵型号由汉语拼音大写字母和阿拉伯数字组成,具体如下:



标记示例 1: 机座号为 $100 \, \text{mm}$,规定流量为 $10 \, \text{m}^3/\text{h}$,规定扬程为 $36 \, \text{m}$,叶轮级数为 $7 \, \text{级}$,配套额定功率为 $1.5 \, \text{kW}$,三相井用潜水电泵的型号表示为 $100 \, \text{QJ} \, 10^- 36/7 - 1.5$ 。

标记示例 2: 机座号为 75 mm, 规定流量为 3 m³/h, 规定扬程为 62 m, 叶轮级数为 18 级, 配套额定功率为 1.1 kW, 单相井用潜水电泵的型号表示为 75QJD3-62/18-1.1。

4.2.2 电动机型号

电动机型号由汉语拼音大写字母和阿拉伯数字组成,具体如下:

标记示例 1: 机座号为 100 mm, 额定功率为 2.2 kW 的井用屏蔽式潜水单相异步电动机的型号表示为 YQSDP100-2.2。

标记示例2: 机座号为200 mm, 额定功率为15 kW的井用充水式潜水三相异步电动机的型号表示为YQS200-15。

4.3 基本参数

在电源频率为50Hz,电压为单相(220V)或三相(380V、660V)时和规定的使用条件下,充油式电泵的基本参数应符合表1的规定。当电泵基本参数与表1不符时,电泵效率按附录A的计算值确定。

表 1 电泵的基本参数

r 	#4 D	规定流量	规定扬程	额定功率	转速	机组效率
序号	型号	m³/h	m	kW	r/min	%
1	75QJD2-19/7-0.18	2	19	0.18		22
2	75QJD2-27/10-0.25	2	27	0.25		22.5
3	75QJD2-38/14-0.37	2	38	0.37		23.5
4	75QJD2-54/20-0.55	2	54	0.55		24.5
5	75QJD2-73/27-0.75	2	73	0.75		26
6	75QJD2-89/33-1.1	2	89	1.1		27
7	100QJD2-36/6-0.37	2	36	0.37		25.1
8	100QJD2-54/9-0.55	2	54	0.55		26.4
9	100QJD2-68/11-0.75	2	68	0.75		27.7
10	100QJ2-68/11-0.75	2	68	0.75		28.2
11	100QJD2-94/15-1.1	2	94	1.1		29.0
12	100QJ2-94/15-1.1	2	94	1.1		29.5
13	100QJD2-126/20-1.5	2	126	1.5		29.9
14	100QJ2-126/20-1.5	2	126	1.5		30.4
15	100QJD2-143/23-1.8	2	143	1.8		30.1
16	100QJ2-143/23-1.8	2	143	1.8	2850	31.2
17	100QJD2-170/27-2.2	2	170	2.2		30.4
18	100QJ2-170/27-2.2	2	170	2.2		31.2
19	100QJ2-224/36-3	2	224	3		31.7
20	100QJ2-312/50-4	2	312	4		32.6
21	100QJ2-395/65-5.5	2	395	5.5		33.0
22	100QJ2-470/78-7.5	2	470	7.5		33.4
23	100QJD4-25/5-0.37	4	25	0.37		30.0
24	100QJD4-35/7-0.55	4	35	0.55		31.0
25	100QJD4-47/9-0.75	4	47	0.75		33.0
26	100QJ4-47/9-0.75	4	47	0.75		35.0
27	100QJD4-64/12-1.1	4	64	1.1		34.0
28	100QJ4-64/12-1.1	4	64	1.1		35.5
29	100QJD4-82/15-1.5	4	82	1.5		35.0
30	100QJ4-82/15-1.5	4	82	1.5		36.0
31	100QJD4-95/18-1.8	4	95	1.8		35.5

表 1 电泵的基本参数(续)

序号	型号	规定流量	规定扬程	额定功率	转速	机组效率
厅 与	至与	m³/h	m	kW	r/min	%
32	100QJ4-95/18-1.8	4	95	1.8		36.5
33	100QJD4-114/21-2.2	4	114	2.2		36.0
34	100QJ4-114/21-2.2	4	114	2.2		37.0
35	100QJ4-140/26-3	4	140	3		37.5
36	100QJ4-188/35-4	4	188	4		38.0
37	100QJ4-239/45-5.5	4	239	5.5		38.5
38	100QJ4-305/58-7.5	4	305	7.5		39.0
39	100QJD6-31/6-0.75	6	31	0.75		35.0
40	100QJ6-31/6-0.75	6	31	0.75		37.0
41	100QJD6-43/8-1.1	6	43	1.1		36.0
42	100QJ6-43/8-1.1	6	43	1.1		37.5
43	100QJD 6-5 4/10-1.5	6	54	1.5		36.5
44	100QJ6-54/10-1.5	6	54	1.5		38.0
45	100Q JD 6-61/11-1.8	6	61	1.8		37.0
46	100 Q J6-61/11-1.8	6	61	1.8		38.5
47	10 <mark>0</mark> QJD6-71/13-2.2	6	71	2.2		37.5
48	1 <mark>00</mark> QJ6-71/13-2.2	6	71	2.2		39.0
49	10 <mark>0</mark> QJ6-97/18-3	6	97	3		39.5
50	100QJ6-129/24-4	6	129	4	2050	40.0
51	100QJ6-167/31-5.5	6	167	5.5	2850	40.5
52	100QJ6-200/38-7.5	6	200	7.5		41.0
53	100QJD8-22/4-0.75	8	22	0.75		37.0
54	100QJ8-22/4-0.75	8	22	0.75		38.0
55	100QJD8-33/6-1.1	8	33	1.1		39.0
56	100QJ8-33/6-1.1	8	33	1.1		41.0
57	100QJD8-45/8-1.5	8	45	1.5		40.0
58	100QJ8-45/8-1.5	8	45	1.5		42.0
59	100QJD8-51/9-1.8	8	51	1.8		41.0
60	100QJ8-51/9-1.8	8	51	1.8		43.0
61	100QJD8-58/10-2.2	8	58	2.2		42.0
62	100QJ8-58/10-2.2	8	58	2.2		43.5
63	100QJ8-82/15-3	8	82	3		44.0
64	100QJ8-106/19-4	8	106	4		44.5
65	100QJ8-140/25-5.5	8	140	5.5		45.0
66	100QJ8-170/31-7.5	8	170	7.5		45.5
67	100QJD10-20/4-0.75	10	20	0.75		36.0
68	100QJ10-20/4-0.75	10	20	0.75		38.0
69	100QJD10-26/5-1.1	10	26	1.1		37.0

表 1 电泵的基本参数(续)

序号	型号	规定流量	规定扬程	额定功率	转速	机组效率
广与	至与	m³/h	m	kW	r/min	%
70	100QJ10-26/5-1.1	10	26	1.1		39.0
71	100QJD10-36/7-1.5	10	36	1.5		37.5
72	100QJ10-36/7-1.5	10	36	1.5		39.5
73	100QJD10-42/8-1.8	10	42	1.8		38.0
74	100QJ10-42/8-1.8	10	42	1.8		40.0
75	100QJD10-47/9-2.2	10	47	2.2		38.5
76	100QJ10-47/9-2.2	10	47	2.2		41.0
77	100QJ10-62/12-3	10	62	3		41.5
78	100QJ10-80/15-4	10	80	4		42.0
79	100QJ10-103/19-5.5	10	103	5.5		42.5
80	100QJ10-123/24-7.5	10	123	7.5		43.0
81	100QJD15-23/6-1.5	15	23	1.5		39.3
82	100QJ15-23/6-1.5	15	23	1.5		39.3
83	100QJD15-26/7-1.8	15	26	1.8		40.5
84	100QJ15-26/7-1.8	15	26	1.8		40.5
85	100QJD15-34/9-2.2	15	34	2.2		40.5
86	100QJ15-34/9-2.2	15	34	2.2		40.5
87	100QJ15-45/12-3	15	45	3		41.0
88	100QJ15-60/16-4	15	60	4	2850	42.2
89	100QJ15-80/21-5.5	15	80	5.5	2830	42.8
90	100QJ15-95/26-7.5	15	95	7.5		43.3
91	125QJ8-53/7-1.5	8	53	1.5		42.0
92	125QJ8-68/9-2.2	8	68	2.2		43.0
93	125QJ8-90/12-3	8	90	3		44.0
94	125QJ8-115/15-4	8	115	4		46.0
95	125QJ8-160/20-5.5	8	160	5.5		48.0
96	125QJ8-225/28-7.5	8	225	7.5		48.5
97	125QJ8-262/33-9.2	8	262	9.2		49.0
98	125QJ8-312/39-11	8	312	11		49.5
99	125QJ8-372/47-13	8	372	13		50.0
100	125QJ8-422/53-15	8	422	15		50.5
101	125QJ15-31/5-1.5	15	31	1.5		46.5
102	125QJ15-43/7-2.2	15	43	2.2		47.0
103	125QJ15-55/9-3	15	55	3		49.0
104	125QJ15-70/11-4	15	70	4		51.0
105	125QJ15-95/15-5.5	15	95	5.5		52.0
106	125QJ15-130/20-7.5	15	130	7.5		53.0
107	125QJ15-153/23-9.2	15	153	9.2		54.0

表 1 电泵的基本参数(续)

		规定流量	规定扬程	额定功率	转速	机组效率
序号	型号	m³/h	m	kW	r/min	%
108	125QJ15-183/28-11	15	183	11	2, 2222	54.5
109	125QJ15-228/34-13	15	228	13		55.0
110	125QJ15-245/37-15	15	245	15		55.5
	-					
111	125QJ25-22/4-2.2	25	22	2.2		44.7
112	125QJ25-33/6-3	25	33	3		48.0
113	125QJ25-38/7-4	25	38	4		49.0
114	125QJ25-50/9-5.5	25	50	5.5		49.5
115	125QJ25-68/12-7.5	25	68	7.5		50.0
116	125QJ25-88/15-9.2	25	88	9.2		52.0
117	125QJ25-106/18-11	25	106	-11		52.5
118	125QJ25-125/21-13	25	125	13		53.0
119	125QJ2 5- 135/24-15	25	135	15		53.5
120	150 QJ 10-100/10-5.5	10	100	5.5		47.9
121	150QJ10-140/14-7.5	10	40	7.5		48.2
122	150QJ10-160/16-9.2	10	160	9.2		48.5
123	1 50 QJ10-200/20-11	10	200	11		49.1
124	150QJ10-220/22-13	10	220	13		49.1
125	150QJ10-260/26-15	10	260	15		49.8
126	150QJ18-54/6-5.5	18	54	5.5		49.4
127	150QJ18-82/9-7.5	18	82	7.5	2850	49.7
128	150QJ18-100/11-9.2	18	100	9.2		50.1
				-		
129	150QJ18-118/13-11	18	118	11		50.7
130	150QJ18-135/15-13	18	135	13		50.8
131	150QJ18-163/18-15	18	163	15		51.4
132	150QJ25-50/6-5.5	25	50	5.5		49.8
133	150QJ25-67/8-7.5	25	67	7.5		50.1
134	150QJ25-83/10-9.2	25	83	9.2		50.4
135 136	150QJ25-100/12-11 150QJ25-117/14-13	25 25	100 117	11 13		51.1 51.1
137	150QJ25-11//14-15 150QJ25-134/16-15	25	134	15		51.7
138	150QJ30-35/5-5.5	30	35	5.5		50.4
139	150QJ30-49/7-7.5	30	49	7.5		50.7
140	150QJ30-63/9-9.2	30	63	9.2		51.1
141	150QJ30-69/10-11	30	69	11		51.6
142	150QJ30-76/11-13	30	76	13		51.7
143	150QJ30-90/13-15	30	90	15		52.4
144	150QJ32-40/5-5.5	32	40	5.5		50.2
145	150QJ32-55/7-7.5	32	55	7.5		50.5
146	150QJ32-63/8-9.2	32	63	9.2		50.8
147	150QJ32-80/10-11	32	80	11		51.5

序号	型号	规定流量	规定扬程	额定功率	转速	机组效率
11, 9	至日	m³/h	m	kW	r/min	%
148	150QJ32-89/11-13	32	89	13		51.5
149	150QJ32-103/13-15	32	103	15		52.1
150	150QJ40-36/4-5.5	40	36	5.5		50.2
151	150QJ40-44/5-7.5	40	44	7.5		50.5
152	150QJ40-55/6-9.2	40	55	9.2		50.8
153	150QJ40-65/7-11	40	65	11		51.5
154	150QJ40-72/8-13	40	72	13	2850	51.5
155	150QJ40-82/9-15	40	82	15		52.1
156	150QJ50-37/5-7.5	50	37	7.5		50.5
157	150QJ50-46/6-9.2	50	46	9.2		50.8
158	150QJ50-54/7-11	50	54	11		51.5
159	150QJ50-61/8-13	50	61	13		51.5
160	150QJ50-68/9-15	50	68	15		52.1

表 1 电泵的基本参数(续)

4.4 连接尺寸

4.4.1 电泵的机座号、最大外径、转速与额定功率的关系应符合表 2 的规定。

机座号 最大外径/mm 转速/ (r/min) 额定功率/kW 75 78 0.18, 0.25, 0.37, 0.55, 0.75, 0.92, 1.1, 1.5, 2.2 $0.25,\ 0.37,\ 0.55,\ 0.75,\ 1.1,\ 1.5,\ 2.2,\ 3,\ 4,\ 5.5,\ 7.5$ 100 102 1.5, 2.2, 3, 4, 5.5, 7.5, 9.2, 11, 13, 15, 18.5, 22 125 134 150 145 3, 4, 5.5, 7.5, 9.2, 11, 13, 15, 18.5, 22, 25, 30, 37, 45 2850 3, 4, 5.5, 7.5, 9.2, 11, 13, 15, 18.5, 22, 25, 30, 37, 45, 55, 175 168 3, 4, 5.5, 7.5, 9.2, 11, 13, 15, 18.5, 22, 25, 30, 37, 45, 55, 190 200 63, 75, 90, 100, 110

表 2 机座号、最大外径、同步转速与额定功率

4.4.2 电泵的泵与电动机连接尺寸及配合公差应符合图 1 和表 3 的规定。

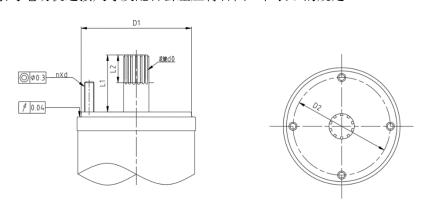


图 1 电动机与泵连接尺寸及公差

表 3 电动机与泵的连接尺寸及公差

单位为毫米

机座号		凸纷	限寸			轴伸尺寸							
	L	\mathbf{O}_{I}	D	1	L_1			花链	<u>‡</u> d ₀				
	上限	下限	D_2	n×d	上限	下限	L_2	齿根形式	齿数	模数	压力角		
75	67.97	67.94	58	3×M6	35.3	35.05	≥14	平齿根	12	1.0583	30°		
100	87.32	87.25	76	$4\times$ M8	38.3	38.05	≥16	平齿根	14	1.0583	30°		
125	76.20	76.12	111	4×M12	73.03	72.64	≥25	平齿根	15	1.5875	30°		
150	76.20	76.12	111	4×M12	73.03	72.64	≥25	平齿根	15	1.5875	30°		
200	127	126.92	152.4	4×M16	101.6	101.35	≥43	圆齿根	23	1.5875	30°		

5 技术要求

5.1 使用条件

- 5.1.1 电泵产品应符合本文件的要求,并按经规定程序批准的产品图样和技术文件制造
- 5.1.2 电泵在下列使用条件下应能连续正常运行:
 - a) 电动机完全潜入水中, 其潜入深度不大于 70 m;
 - b) 水温不高于 40°C;
 - c) 水中固体物含量(按质量计)不大于0.01%;
 - d) 水的酸碱度 pH 值 6.5~8.5;
 - e) 水中氯离子的含量不超过 400 mg/L;
 - f) 水中硫化氢的含量不大于 1.5 mg/L;
 - g) **充水式**电动机内腔应充满清水或其它按制造厂规定配置的水溶液。
- 5.1.3 电泵在运行期间,电源电压和频率的变化及其对电动机性能和温升限制的影响应符合 GB/T 755 的规定。

5.2 电泵性能及其偏差

- 5.2.1 电泵性能均以实际转速为基准,不折算(即实测值)。
- 5. 2. 2 电泵在 0.8 倍 \sim 1.2 倍规定流量范围内电动机的输入功率不超过允许的最大输入功率 P_{max} 。最大输入功率 P_{max} 按式(1)计算:

式中:

 P_{max} ——最大输入功率,单位为千瓦(kW);

 P_N ——电动机额定功率,单位为千瓦(kW);

 η_m ——电动机额定功率效率,%。

5. 2. 3 电泵流量、扬程和效率的容差系数应符合 GB/T 12785—2014 的表 7 中 2B 级的规定。

5.3 电动机

5.3.1 电动机在功率、电压及频率为额定时,三相电动机的效率和功率因数的保证值应符合表 4(充水式)、表 5(充油式)和表 6(屏蔽式)的规定,单相电动机的效率和功率因数的保证值应符合表 7的规定。

表 4 同步转速 3000 r/min 充水式三相电动机的效率和功率因数的保证值

机座号	10	0	12	5	1:	50	17.	5	20	00
额定 功率 kW	效率 η %	功率 因数 cosφ	效率 η %	功率因 数 cosφ	效率 η %	功率 因数 cosφ	效率 η %	功率 因数 cosφ	效率 η %	功率 因数 cosφ
0.25	51.0	0.68	_	_	_	_	_	_	_	_
0.37	53.0 56.0	0.70		_	_					
0.75	58.0	0.72							_	_
1.1	61.0	0.73	_	_	_	_	_	_	_	
1.5	63.0	0.74	67.0	0.74		_		_	_	_
2.2	65.0	0.75	69.0	0.74	_	_		_	_	_
3	67.0	0.75	71.0	0.75	74.5	0.78	75.0	0.79	76.0	0.78
4	69.0		73.0	0.75	76.0	0.79	76.5	0.79	77.0	0.79
5.5	70.0	0.76	74.0	0.76	76.5	0.90	77.5	0.90	77.5	0.80
7.5	71.0		75.0	0.76	77.0	0.80	78.0	0.80	78.0	
9.2		_	75.0	0.77	78.0		79.0	0.01	79.0	0.81
11	_	_	76.0	0.77	78.5	0.01	80.0	0.81	79.5	
13	_	_	76.0	0.78	79.5	0.81	80.5		80.0	0.82
15	_	_	77.0	0.78	90.5		01.0	0.82	81.0	0.82
18.5	_	_	78.0	0.78	80.5		81.0		82.0	
22	_	_	78.0	0.78	81.0	0.82	81.5		83.0	0.83
25	_	_	_	_	61.0		01.5	0.83	84.0	0.03
30							82.0		04.0	
37	_	_	_		81.5	0.83			85.0	
45	_		_				00.5	0.84		0.84
55 63		_					82.5		85.5	
75	_	_	_			_			83.3	
90	_	_	_	_		_				
100		_	_			_		_	86.0	0.85
110	_	_	_	_		_		_		

表 5 同步转速 3000 r/min 充油式三相电动机的效率和功率因数的保证值

机座号	75			100 150		50	175	5	200	
额定 功率 kW	效率 η %	功率 因数 cosø								
0.25	53.0	0.69	55.0	0.70	,,,	Cosp	,,	Cosy	,,	Cosy
0.37	56.0	0.70	58.0	0.72						
0.55	58.0	0.72	61.0	0.74	_		_		_	
0.75	62.0	0.73	64.0	0.75						
1.1	65.0	0.74	67.0	0.76						

表 5 同步转速 3000 r/min 充油式三相电动机的效率和功率因数的保证值(续)

机座号	75			100	1:	50	175	5	200)
额定	效率	功率	效率	功率	效率	功率	效率	功率	效率	功率
功率	η	因数	η	因数	η	因数	η	因数	η	因数
kW	%	$cos \varphi$	%	$cos \varphi$	%	cosφ	%	$cos \varphi$	%	$cos \varphi$
1.5	67.0	0.75	69.0	0.77						
2.2	70.0	0.76	71.0	0.78			_		_	_
3			72.0	0.70	74.0					
4	_	_	74.0	0.79	75.0	0.80	76.0	0.01	77.0	0.01
5.5	_	_	75.0	0.00	76.0		77.0	0.81	78.0	0.81
7.5	_		76.0	0.80	76.5	0.01	78.0		70.0	
9.2	_		_		77.0	0.81	78.0	0.82	79.0	0.82
11	_	_		The state of the s	70.0	0.02	79.0		80.0	
13	_				78.0	0.82			01.0	
15	_			_	70.0		80.0	0.83	81.0	0.83
18.5				_	79.0	0.83			82.0	
22		_	_		00.0		01.0	1	83.0	
25	//-	_	_	_	80.0		81.0	0.84		0.84
30		_	_		81.0				84.0	
37						0.84	82.0	3		M
45	- 6	8 - \			82.0	1			85.0	M
55	_ 8					****	83.0	0.85		0.85
63	<u> </u>						84.0		85.5	
75	_	爨	_	1	1	_	_			
90			A —	_		_	_	_		0.06
100		1		<u> </u>	_	_		_	86.0	0.86
110			_		_	_	_			

表 6 同步转速 3000 r/min 屏蔽式三相电动机的效率和功率因数的保证值

机座号						- 4	100					
额定功率/kW	0.37	0.55	0.75	1.1	1.5	2.2 3		4	5.5	7.:	5	
效率 η/%	67.0	69.0	70.0	71.0	72.0		73.0		74.0	75.0	76.	.0
功率因数 cosφ	0.70	0.71	0.72	0.73	0.74	0.75		0.76	0.77		0.78	
机座号						125						
额定功率/kW	1.5	2.2	3	4	5.5	7.5	9.2	11	13	15	18.5	22
效率 η/%	73.0	74.0	75.0	76.0	77	7.0	73	8.0	7:	9.0	80.	.0
功率因数 cosφ	0.74	0.75	0.76	0.77	0.	78	0.	.79	0.80		0.81	
机座号							150					
额定功率/kW	3	4	5.5	7.5	9.2	11 13 15 18.5 22		25	30			
效率 η/%	76.0	77.0	78.0	79.0	80	80.0 81.0		82.0		83.	.0	
功率因数 cosφ	0.78	0.79	0.	80	0.	81	0.	.82	0	.83	0.84	

额定功率 kW	屏蔽式		充油式		充水式	
	效率 η	功率因数 cosφ	效率 η	功率因数 cosφ	效率 η	功率因数 cosφ
	%		%		%	
0.25	52.0	0.67	52.0	0.68	43.0	0.65
0.37	53.0	0.68	54.0	0.69	46.0	0.66
0.55	56.0	0.71	57.0	0.72	50.0	0.69
0.75	59.0	0.73	60.0	0.74	53.0	0.70
1.1	63.0	0.75	63.0	0.76	56.0	0.72
1.5	65.0	0.77	65.0	0.78	59.0	0.73
2.2	66.0	0.77	66.0	0.79	61.0	0.74
3	67.0	0.78	67.0	0.81	63.0	0.75
4	68.0	0.78	68.0	0.82	65.0	0.75
注: 单相电容运转	注: 单相电容运转电动机的效率为表列值的1.03倍,功率因数为0.93。					

表 7 同步转速 3000 r/min 单相电动机的效率和功率因数的保证值

5.3.2 在额定电压下,三相电动机堵转转矩对额定转矩之比的保证值应符合表 8 的规定,单相电动机堵转转矩对额定转矩之比的保证值应符合表 9 的规定。

表 8 三相电动机堵转转矩对额定转矩之比的保证值

额定功率/kW	€13	15~30	37~220	>220
堵转转矩/额定转矩	1.2	1.1	1.0	0.8

表 9 单相电动机堵转转矩对额定转矩之比的保证值

型式	电容运转	电阻启动	其他
堵转转矩/额定转矩	0.5	1.1	1.2

- 5. 3. 3 在额定电压下,电动机起动过程中的最小转矩,对额定功率小于 100 kW 者应不低于 0.8 倍额定转矩;对 100 kW 及以上者应不低于 0.5 倍额定转矩。
- 5.3.4 在额定电压下,电动机的最大转矩的保证值对额定功率小于 100 kW 者为 2 倍额定转矩,对 100 kW 及以上者为 1.8 倍额定转矩。
- 5.3.5 在额定电压下,电动机堵转电流对额定电流之比的保证值对单相电阻启动电动机应不超过 10 倍,其他类型电动机应符合表 10 的规定。

表 10 三相电动机堵转电流对额定电流之比的保证值

额定功率/kW	≤37	>37			
堵转电流/额定电流	7	6.5			
注: 额定电流值应按额定功率、额定电压及效率和功率因数的保证值(不计及容差)求得。					

5.3.6 电动机电气性能保证值的容差应符合表 11 的规定。

序号	电气性能名称	容差			
1	效率 (η)	-0.15 (1-η)			
2	功率因数 (cosφ)	- (1-cosφ) /6, 最少-0.02, 最多-0.07			
3	堵转转矩	转矩保证值的-15%, +25% (经协议可超过+25%)			
4	最小转矩	转矩保证值的-15%			
5	最大转矩	转矩保证值的-10%			
6	堵转电流	电流保证值的+20%			
	转差率 (在满载和工作温度下):				
7	——额定功率在1kW以下;	转差率保证值的±30%			
	——额定功率在1kW及以上。	转差率保证值的±20%			
注: 转	注:转差率保证值={同步转速一额定转速((标牌明示值)}/同步转速。				

表 11 电气性能保证值的容差

5.3.7 当水温不高于40℃时,电动机定子绕组的温升限值(电阻法)应不超过表12的规定。

绝缘材料或热分级	温升限值/K
聚乙烯型	45
聚丙烯型	52
交联聚乙烯型	60
130 (B)	80
155 (F)	105
180 (H)	125

表 12 定子绕组的温升限值 🥻

5.3.8 充水式电动机浸于接近室温的水中 12h 后,定子绕组对机壳的绝缘电阻,对聚乙烯型、聚丙烯型和交联聚乙烯型绕组应不低于 $150\,\mathrm{M}\Omega$ 。

浸于接近室温水中的充油式和屏蔽式电动机的定于绕组(含信号线)对机壳的绝缘电阻应不低于 $100~{\rm M}\Omega$ 。

- 5.3.9 接近工作温度时,定子绕组的热态绝缘电阻应不低于1MΩ。
- 5. 3. 10 电动机的定子绕组(含信号线)应能承受历时 1 min 的耐电压试验而不发生击穿。试验电压的 频率为 50 Hz,并尽可能为正弦波形。三相电动机,对额定电压为 380 V 者,试验电压的有效值为 1760 V; 对额定电压为 660 V 者,试验电压的有效值为 2320 V; 单相电动机试验电压的有效值为 1500 V。试验前,充水式电动机应浸于接近室温的水中 12 h。电动机的耐电压试验不应重复进行,确有必要时试验电压应为规定值的 80%。

型式检验时,定子绕组的耐电压试验应在绕组接近工作温度时进行。

5.3.11 电动机的定子绕组(导线直接浸水的除外)应能承受匝间冲击耐电压试验而不发生击穿,单相电动机试验电压(峰值)为 1800 V,三相电动机试验冲击电压峰值按表 13 的规定。

表 13 三相电动机试验冲击电压峰值

额定电压/V	380	660	
试验冲击电压峰值/V	3000	3900	

- 5. 3. 12 干式电动机按 GB/T 2423.4—2008 中规定的 40° C交变湿热试验方法进行,经 12 周期试验后,测量电动机定子绕组的绝缘电阻对额定电压 $380\,V$ 应不低于 $1.14\,M\Omega$,对额定电压 $660\,V$ 应不低于 $1.98\,M\Omega$,并应能承受历时 $1\,min$ 的耐电压试验而不发生击穿,试验电压的有效值对额定电压 $380\,V$ 为 $1500\,V$,对额定电压 $660\,V$ 为 $1970\,V$ 。电动机的耐电压试验不应重复进行,如有必要,其试验电压为规定值的 80%。重复试验前应将电动机烘干后进行。
- 5. 3. 13 当三相电源平衡时,电动机三相空载电流中任何一相与三相平均值的偏差应不大于三相平均值的 10%。
- 5. 3. 14 充水式或屏蔽式电动机组装后,内腔应能承受 0.05 MPa 的耐压力试验,历时 5 min 而无渗漏现象。当轴伸处油封唇口朝外安装时,允许轴伸表面有微量渗漏,但这种渗漏应不影响试验的正常进行。 充油式电动机总装注油后,内腔应能承受 0.2 MPa 的耐压力试验,历时 5 min 而无渗漏现象。
- 5.3.15 电动机应采取有效的防腐蚀措施,并安装防砂密封装置。
- 5.3.16 电动机优先采用全电压直接起动。如用户的电源容量不够,也可采用降压起动。两次起动应有足够的时间间隔。
- 5. 3. 17 在电泵允许使用的性能范围内,向下的轴向力(包括轴向水推力和转子自重)应小于表 14 的规定值。

I	机座号	75	100	125	150	175	200
	允许轴向力/kN	0.8	1.5	4	6	8	10

表 14 电动机轴向力

5.4 电泵主要零部件材料要求

- 5.4.1 外露不锈钢紧固件应符合 GB/T 3098.6 的规定, 有特殊要求或合同规定的可按其执行。
- 5. 4. 2 铸件应符合 GB/T 9439 或 GB/T 1348 或 JB/T 6880.1、JB/T 6880.2、JB/T 6880.3 的规定。
- 5.4.3 不锈钢件应符合 GB/T 20878 的规定。
- 5.4.4 铜件应符合 GB/T 1176 的规定。

5.5 电泵主要零、部件要求

5.5.1 电动机转子应进行做静(动)平衡试验。转子最大外径上的静平衡质量不得大于式(2)的计算值;动平衡质量不得大于式(3)的计算值:

$$\Delta W_j = \frac{2eW}{D} \tag{2}$$

$$\Delta W_d = \frac{eW}{D} \tag{3}$$

式中:

 ΔW_i ——最大外径处静平衡质量,单位为克(g);

 ΔW_d ——最大外径处动平衡质量,单位为克(g);

e ——许用剩余不平衡度(应符合 GB/T 9239.1—2006 中 G6.3 级的规定),单位为克毫米每千克 (g·mm/kg): 同步转速为 3000 r/min 时,*e*=20 g·mm/kg; 同步转速为 1500 r/min 时,*e*=40 g·mm/kg;

W ——转子质量,单位为千克(kg);

D ——转子最大外径,单位为毫米 (mm)。

当计算静平衡的最大外径处平衡质量小于 3 g 时,则按 3 g 计。当计算动平衡的最大外径处平衡质量小于 1.5 g 时,则按 1.5 g 计。

- 5. 5. 2 设置在进水段周围的滤水网,其孔的最大尺寸不应超过水泵流道最小尺寸的 70%,孔的总有效面积一般不小于叶轮进口有效面积的 5 倍。
- 5.5.3 泵工作部件上端应安装逆止阀。但对于扬程较低的泵,当确认泵在停机时,扬水管中倒流的水压不足以使泵工作部件造成损坏,可不装逆止阀。
- 5.5.4 对导流壳、阀体、泵座(弯头)等承受水压的零件应做水压试验。试验压力为额定工作压力的 1.5 倍,保压 5 min,不应渗漏。

5.6 引出电缆

- 5. 6. 1 额定功率大于0.75 kW单相电动机应采用GB/T 5013.4、JB/T 8735.2或JB/T 8735.3中规定的电缆,额定功率小于或等于0.75 kW的单相电动机宜采用GB/T 5013.4、GB/T 5023.5、JB/T 8735.2或JB/T 8735.3 中规定的电缆,额定功率大于3 kW的三相电动机应采用GB/T 5013.4、JB/T 8735.2或JB/T 8735.3中规定的电缆,额定功率小于或等于3 kW的三相电动机宜采用GB/T 5013.4、GB/T 5023.5、JB/T 8735.2或JB/T 8735.3中规定的电缆。
- 5.6.2 引出电缆的长度自水泵出水口测量不应少于2m,并应能保证潜水电泵正常安装使用。

5.7 装配

- 5.7.1 电泵的所有零部件应经检验合格后,方可进行装配。
- 5.7.2 电泵组装完成后,应转动平稳、自如、无卡滞现象。
- 5.7.3 电泵应有可靠的防腐措施,表面应无污损、碰伤、裂痕等缺陷。
- 5.7.4 用普通钢材制作的进水滤网、电缆防护罩以及连接用螺钉、螺母等零件应有防锈措施。
- 5.7.5 电泵涂漆漆膜外观、厚度和附着力应符合 JB/T 5673—2015 表 1 中 TQ-4-SM-DM 的规定。

5.8 安全要求

- 5.8.1 电泵放有安全可靠的过热或过电流等保护装置,并符合下列要求:
 - a) 内装保护装置随产品提供,并在产品使用说明书中明确说明保护装置。
 - b) 外置保护装置应在产品使用说明书中给出具体要求和配置的方法。
 - c) 用户有要求时可外配带漏电保护装置。
- 5.8.2 电泵应有可靠的接地装置或接地线,引出电缆的接地线上应有明显的接地标志;电泵电机线端标志与旋转方向应符合GB/T 1971的规定,线端(引出电缆)标志按表15的规定。各标志应保证在电泵使用期间不易磨灭。

定子绕组名称	线端标志
第一组	U
第二组	V
第三组	W

表 15 电泵电机线端(引出电缆)标志

- 5.8.3 电泵的安全要求应符合 GB 10395.8 的规定。
- 5.8.4 电泵的安全标志应符合 GB 10396 的规定。

5.9 可靠性

在规定的使用条件下,电泵首次故障前平均工作时间(MTTFF)应不小于2500 h。

6 试验方法

6.1 试验要求

- 6.1.1 电泵的试验方法应符合 GB/T 12785-2014 的规定。
- 6.1.2 电泵性能试验应在 GB/T 12785—2014 规定的测量不确定度为 2 级的试验台上进行。

6.2 电泵效率测定

电泵效率采用实测法测定,其值按式(5)确定:

$$\eta_{DB} = \frac{P_r}{P_I} \times 100 \qquad (5)$$

式中:

 η_{DB} ——电泵效率,%; P_r ——水功率,单位为千瓦(kW);

 P_1 ——输入电功率,单位为千瓦 (kW)。

6.3 电泵流量、扬程测定

电泵流量、扬程按GB/T 12785—2014中第8章的规定进行测定。

6.4 电动机

6.4.1 电动机效率和功率因数测定

电动机的效率和功率因数按GB/T 12785—2014中第8章的规定进行测定。

6.4.2 电动机堵转测定

电动机堵转按GB/T 12785-2014中第10章的规定进行测定。

6.4.3 申.动机最小转矩测定

电动机最小转矩按GB/T 12785—2014中第12章的规定进行测定。

6.4.4 电动机最大转矩测定

电动机最大转矩按GB/T 12785-2014中第11章的规定进行测定。

6.4.5 电动机定子绕组温升测定

电动机定子绕组温升按GB/T 12785—2014中第7章的规定进行测定。

6.4.6 电动机绝缘电阻测定

电动机绝缘电阻按GB/T 12785—2014中5.2的规定进行测定。

6.4.7 电动机耐电压测定

电动机耐电压按GB/T 12785-2014中13章的规定进行测定。

6.4.8 电动机匝间绝缘测定

电动机匝间绝缘按GB/T 12785-2014中14章的规定进行测定。

6.4.9 电动机内腔耐压力测定

电动机内腔耐压力在水(气)压试验装置上进行测定。

6.4.10 电动机轴向力测定

电动机轴向力按GB/T 12785-2014中17章的规定进行测定。

6.5 静(动)平衡试验

电机转子的静(动)平衡试验按GB/T 9239.1的规定进行。电泵整机不解体进行,可用同规格零部件代替。

6.6 承受水压的零部件静水(气)压试验

电泵中承受水压的零部件的静水(气)压试验应在水(气)压试验装置上进行。电泵整机不解体进行,可用同规格零部件代替。试验压力为1.5倍的额定工作压力,历时5 min无泄漏现象。

6.7 电泵引出电缆测定

- 6.7.1 电泵引出电缆应符合5.6.1的规定。
- 6.7.2 电泵引出电缆长度采用卷尺或其它测量工具测定。

6.8 外观检验

电泵外观采用目测法检验

6.9 涂漆漆膜检验

电泵涂漆漆膜按JB/T 5673的规定进行检验。

6.10 过载保护检验

电泵的过载保护按保护型式采用万用表或监控装置进行检验。

6.11 线端标志与转向检验

电泵的线端标志和转向按GB/T 1971的规定进行检验。

6.12 安全性检验

电泵的安全要求按GB 10395.8的规定进行检验。

6.13 安全标志检验

电泵的安全标志按GB 10396的规定进行检验。

6.14 可靠性检验

电泵的可靠性按JB/T 11923的规定进行检验。

7 检验规则

7.1 出厂检验

- 7.1.1 每台电动机应经检验合格后方可出厂,并应附有产品合格证。
- 7.1.2 出厂检验项目应包括:
 - a) 外观检验;
 - b) 电动机内腔耐压力检验:
 - c) 定子绕组、信号线对机壳相互间的绝缘电阻的检验(仅测量冷态绝缘电阻);
 - 注:型式检验时测取定子绕组、信号线对机壳相互间的热态绝缘电阻。
 - d) 匝间绝缘电阻检验;
 - e) 堵转电流和堵转损耗的测定:
 - 注:型式检验时需测定堵转特性曲线。
 - f) 定子绕组、信号线对机壳的耐电压检验;
 - g) 转向检验;
 - h) 运行状态检验;
 - i) 规定流量下扬程的检验:
 - i) 规定流量下电泵效率的检验;
 - k) 过载保护的检验;
 - 1) 接地标志的检验;
 - m) 安全标志的检验。

上述项目中a)、b)、c)、d)、f)、g)、h)、l)、m)全数检查,e)、i)、j)、k)抽检。7.1.3 抽样和判断处置规则应符合 GB/T 2828.1—2012 的规定。可采用正常检验一次抽样方案,检查批为产品月(或日)产品或一次订货批量(台),检验水平为一般检验水平II,接收质量限(AQL)为4.0: 也可由供需双方协商确定。

7.2 型式检验

- 7.2.1 凡遇下列情况之一者,应进行型式检验:
 - a) 新产品或老产品转厂生产的试制定型鉴定;
 - b) 正式生产后,如结构、材料、工艺有较大改变,可能影响产品性能时;
 - c) 成批生产的电动机定期的抽检,其抽检一般每年进行1次:
 - d) 产品长期停产后,恢复生产时;
 - e) 检验结果与上次型式检验结果有较大差异时。
- 7.2.2 型式检验项目包括:
 - a) 出厂检验的全部项目:
 - b) 定子绕组温升检验;
 - c) 最大转矩的检验;
 - d) 最小转矩的检验:
 - e) 电动机轴向力检验;
 - f) 动(静)平衡检验;
 - g) 电泵水力特性曲线的测定;
 - h) 电泵流量特性曲线的测定(包括:扬程—流量曲线;输入功率—流量曲线;电泵效率—流量曲线);
 - i) 电动机负载特性曲线的测定(包括:功率因数—输入功率曲线;定子电流—输入功率曲线);
 - j) 对电机转子静平衡或动平衡试验、电泵水或气压试验、电动机空载特性试验、电动机堵转特性 试验,可用零件或部件的过程检验代替,不解体进行;
 - k) 可靠性试验。

- 7.2.3 型式检验的抽样和判断处置规则应符合 GB/T 2828.1—2012 的规定。采用正常检验一次抽样方案,检查批量应满足样本大小至少为 2 台,检验水平为特殊检验水平 S-1,接收质量限 (AQL)为 6.5。
- 8 标志、包装、贮存和运输
- 8.1 标志
- 8.1.1 产品标志
- 8.1.1.1 标牌应符合 GB/T 13306 的规定,并固定在明显部位。标牌的材料及标牌上的数据的刻印方法应能保证其字迹在整个使用周期内不易磨灭。
- 8.1.1.2 电泵的标牌至少应标明的内容如下:
 - a) 制造厂名称;
 - b) 电泵的型号和名称;
 - c) 规定流量,单位为立方米每小时(m³/h);
 - d) 规定扬程,单位为米(m);
 - e) 额定功率,单位为千瓦(kW);
 - f) 转速,单位为转每分钟(r/min);
 - g) 出水口径,单位为毫米(mm);
 - h) 日期和出厂编号;
 - i) 质量(净重),单位为千克(kg)
 - j) 执行标准编号。
- 8.1.1.3 电动机的标牌至少应标明的内容如下:
 - a) 制造厂名称;
 - b) 电动机的型号和名称;
 - c) 额定功率,单位为千瓦(kW);
 - d) 额定电压,单位为伏特(V);
 - e) 额定频率,单位为赫兹(Hz);
 - f) 额定电流,单位为安培(A)
 - g) 转速,单位为转每分钟(r/min)
 - h) 相数;
 - i) 热分级或温升限值;
 - i) 出厂日期和出厂编号:
 - k) 质量(净重),单位为千克(kg);
- 8. 1. 1. 4 泵和电动机由同一制造厂制造的电泵可使用一个标牌,标牌内容至少包括 8.1.1.2 规定的全部内容和 8.1.1.3 中 b) , d) , e) , h) , i) 项内容。
- 8.1.1.5 电泵应有明显的转向标志。
- 8.1.1.6 充水式电动机的注水孔和放水孔应有明显的"注水"和"放水"标志。

8.1.2 包装标志

包装箱外壁的文字和标志应清晰、整齐,主要内容如下:

- a) 制造厂名称;
- b) 产品型号、名称及数量;
- c) 质量(净重及连同包装的毛重),单位为千克(kg);

- d) 包装箱外形尺寸:长(mm)×宽(mm)×高(mm);
- e) 包装箱的适当部位应有必要的符合 GB/T 191 规定的标志。

8.2 包装

- 8.2.1 电泵的包装应能保证在正常的运输条件下产品不致因包装不善而损坏。
- 8.2.2 每台电泵应附有下列随机文件:
 - a) 装箱单;
 - b) 产品合格证;
 - c) 使用说明书;
 - d) 其他必要的随机文件。

8.3 贮存

- 8.3.1 电泵存放应通风、防雨、防晒,露天存放时,应有防雨、防晒等措施。
- 8.3.2 电泵存放 6个月应进行必要的检查;存放 12个月及以上时,应进行通电检查和必要的运行检查。

8.4 运输

- 8.4.1 电泵的运输方式及要求由供需双方协商确定。
- 8.4.2 应采取必要的措施以防止运输过程中因振动碰撞损坏电泵。

附录 A (规范性) 电泵效率的确定

A.1 电泵效率

A.1.1 电泵效率按式(A.1)确定:

式中:

 η_{DB} ——电泵效率,%;

 η_D ——电泵电机效率,%;

 η_{SP} ——电泵规定流量下的泵效率,%。

A.1.2 电泵效率确定示例:

某一机座号为 125、规定流量为 $10\,\mathrm{m}^3/\mathrm{h}$ 、配套电动机为三相屏蔽式结构、额定功率为 $3\,\mathrm{kW}$ 的井用潜水电泵,电泵效率计算方法如下:。

查表 6 得: n_b=75%

查图 A.3 得: η_{SP}=55%

则电泵效率: η_{DB} =75%×55%=41.25%

A. 2 泵效率

泵效率按图A.1~图A.6曲线选取。

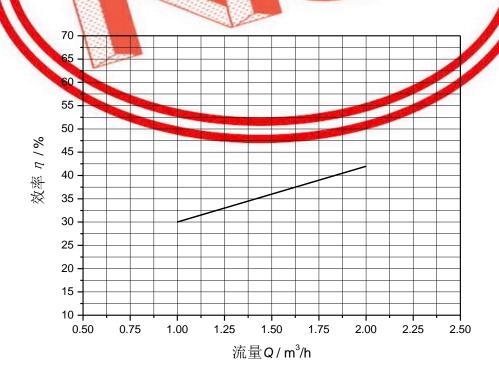


图 A. 1 75 mm 机座号系列效率曲线

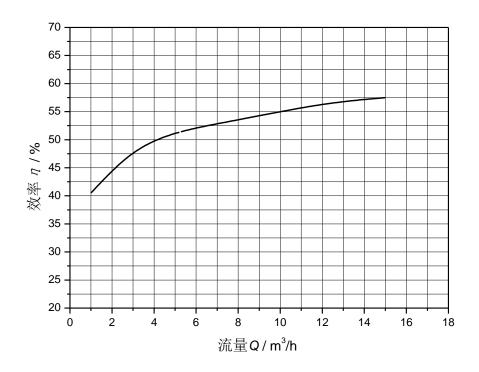


图 A. 2 100 mm 机座号系列效率曲线

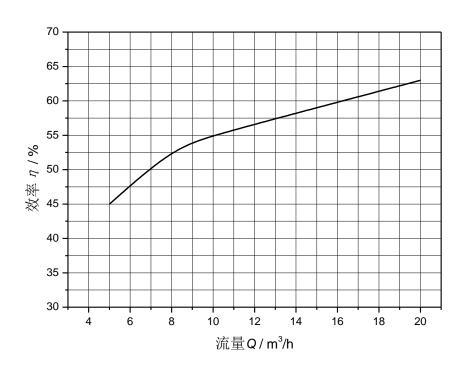


图 A. 3 125 mm 机座号系列效率曲线

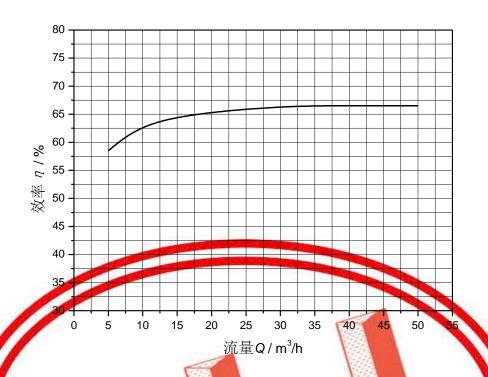


图 A. 4 150 mm 机座号系列效率曲线

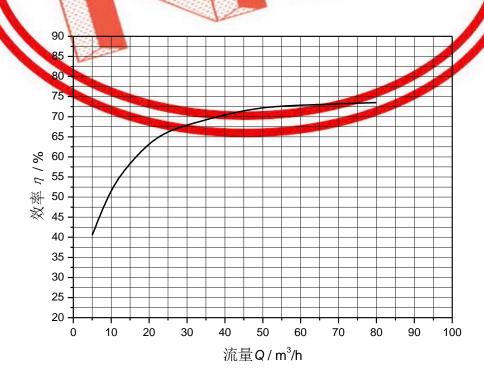


图 A. 5 175 mm 机座号系列效率曲线

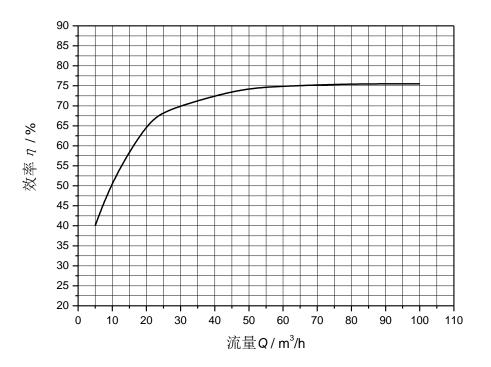


图 A. 6 200 mm 机座号系列效率曲线