广东省环境科学学会团体标准

《土壤和沉积物 铅稳定同位素的测定 多接收电感耦合等离子体质谱法》

编制说明

标准编制工作组 2024 年 04 月

目 录

1.	项目:	背景	1
	1.1	任务来源	1
	1.2	工作过程	1
		1.2.1 成立标准编制工作小组	1
		1.2.2 查询国内外相关标准和文献资料	1
		1.2.3 确定标准制订技术路线,制订原则	1
		1.2.4 实验室内部方法开发	1
		1.2.5 编写标准文本和编制说明初稿	2
		1.2.6 开展方法验证工作	2
		1.2.7 编写标准文本(征求意见稿)和编制说明	2
2.	标准	制修订的必要性	2
	2.1	目标污染物的环境危害	2
		2.1.1 目标污染物的理化性质	2
		2.1.2 目标污染物的危害	2
	2.2	相关环保标准和环保工作的需要	3
	2.3	现行环境监测分析方法标准的实施情况和存在问题	4
		2.3.1 现行污染物分析方法标准的局限性	4
		2.3.2 污染物分析仪器、设备、方法等的最新进展	4
3.	国内	外相关分析方法研究	4
	3.1	国内外铅同位素测定标准情况概述	4
	3.2	主要国家、地区及国际组织相关分析方法研究	5
	3.2	国内相关分析方法研究	6
4.	标准	制修订的基本原则和技术路线	7
	4.1	标准制修订的基本原则	7
	4.2	标准的适用范围和主要技术内容	8
	4.3	标准制修订的技术路线	9
5.	方法	研究报告1	0
	5.1	方法研究的目标1	0
	5.2	方法原理1	0
	5.3	试剂和材料1	0
		5.3.1 实验用水1	0

		5.3.2	试剂	10
		5.3.3	标准物质	11
		5.3.4	实验器皿	11
		5.3.5	实验用气	11
5	5.4	仪器和	口设备	11
5	5.5	样品如	上理和仪器分析步骤	11
		5.5.1	确定土壤和沉积物样品消解方法	11
		5.5.2	优化土壤和沉积物中铅的分离提纯步骤	12
		5.5.3	优化仪器分析方法	13
		5.5.4	实验室空白测试	15
		5.5.5	平行试验	16
		5.5.6	结果计算和表示	16
		5.5.7	方法精密度和正确度	17
6. 方	法验	佥证		19
6	5.1	参与方	方法验证的实验室基本情况	19
6	5.2	方法验	硷证方案	24
		6.2.1	方法验证内容	24
		6.2.2	样品准备	24
6	5.3	方法验	硷证过程	24
6	5.4	方法验	硷证结果	24
		6.4.1	精密度数据	24
		6.4.2	正确度数据	29
参考と	文献			32
附件-	6 荡	マション 発証 -	单位报告	34
_	→、	西北	大学	34
_	_,	桂林	理工大学	34
=	Ξ,	南京	大学	34
<u> </u>	四、	国家抗	也质实验测试中心	34
Ē	Ħ.,	河北地	也质大学	34
7	六、	中国是	科学院广州地球化学研究所	34

1. 项目背景

1.1 任务来源

土壤是环境中重金属的重要载体,也是农产品重金属污染的主要来源。重金属在农业土壤中的积累,不仅直接影响土壤理化性状、降低土壤生物活性、阻碍养分有效供给,而且经食物链富集后,直接或间接地威胁人类健康。近年来,土壤环境中铅的污染问题受到研究人员、政府部门和老百姓的广泛关注。广东省政府对土壤中重金属污染溯源工作非常重视,为配合贯彻《广东省土壤污染防治行动计划实施方案》,规范土壤环境中铅同位素的测试方法,特制定本标准。

1.2 工作过程

1.2.1 成立标准编制工作小组

广东省生态环境监测中心成立标准编制工作小组,由从事多年同位素地球化学 分析的技术研发人员、土壤环境质量监测技术人员承担本工作,共同制定《土壤和 沉积物中铅同位素测定方法一多接收电感耦合等离子体质谱法》。

1.2.2 查询国内外相关标准和文献资料

标准编制工作组根据有关标准制修订工作管理办法的相关规定,检索、查询和收集国内外相关标准和文献资料。

1.2.3 确定标准制订技术路线,制订原则

2020年1月至3月,确定了本标准的具体内容、原则、技术路线等内容。本标准目的是制定多接收电感耦合等离子体质谱仪测定土壤和沉积物中铅同位素比值的方法。1、主要内容和技术路线是: (1)建立土壤和沉积物中 Pb 同位素样品前处理方法:包括方法筛选、优化消解操作条件; (2)建立 Pb 元素的分离和纯化方法:包括方法筛选、优化分离和纯化操作条件; (3)建立 Pb 同位素的 MC-ICP-MS 仪器检测方法,包括优化仪器参数,建立数据处理和质控体系; (4)确定方法精密度和准确度,采用3种不同类型土壤和1种沉积物检验方法的适用性; (5)选取6个同位素实验室进行方法验证。

1.2.4 实验室内部方法开发

2020 年 8 月至 2023 年 4 月,在实验室开展实验: (1)对比高温高压釜密闭消解和 PFA 杯常规消解土壤和沉积物中 Pb 的处理方法; (2)优化铅元素的分离和纯

化方法:对比阴离子交换树脂 AG1-X8 和 Sr 特效树脂分离纯化 Pb 效率,以确定 Pb 的化学纯化程序;(3)使用实际的土壤和沉积物样品检验样品消解和 Pb 化学纯化方法;(4)在 MC-ICP-MS 上建立 Pb 同位素的测试方法,测试 NBS 981 Pb 纯标样和实际的土壤和沉积物样品的 Pb 同位素比值。

1.2.5 编写标准文本和编制说明初稿

2021年3月至2023年9月,标准编制工作小组汇整前期研究成果,编写标准草案及编制说明。

1.2.6 开展方法验证工作

2021年4月至2023年9月,标准编制工作组确定了外部6家实验室进行方法验证,于2023年9月收回验证报告,在此基础上进行了数据的汇总和分析整理工作,并编写完成了验证汇总报告。

1.2.7 编写标准文本(征求意见稿)和编制说明

2023年9月至x月,标准编制工作组编写《土壤和沉积物中铅同位素测定方法一多接收电感耦合等离子体质谱法(讨论稿)》的标准文本及编制说明,并于2023年x月x日组织专家对标准文本(讨论稿)及编制说明进行了初步论证。根据专家意见进一步修改,形成标准文本(征求意见稿)及编制说明。

2. 标准制修订的必要性

2.1 目标污染物的环境危害

2.1.1 目标污染物的理化性质

铅,化学元素符号 Pb,原子序数为 82,原子量为 207.2,是原子量最大的非放射性元素,在元素周期表中位于第 6 周期第IVA 族。铅是一种高密度、柔软的银白色金属,略带蓝色,在空气中失去光泽,变成暗灰色,密度 11.3437g/cm³,熔点 327℃,沸点 1740℃,质地柔软,有良好的展性,能压成薄片,但没有延性,不能拉成丝。铅与盐酸反应时,生成溶解度小的氯化铅覆盖在铅的表面,使反应终止,铅能溶于热浓硫酸,生成可溶性的硫酸氢铅;溶于稀硝酸,生成硝酸铅。

2.1.2 目标污染物的危害

铅(Pb)作为一种有毒有害的重金属元素,在人体里蓄积后很难自动排除,尤其对儿童的神经系统、血液循环系统和脑的发育产生严重危害。2017年10月27日,

世界卫生组织国际癌症研究机构公布的致癌物清单初步整理参考,铅在 2B 类致癌物清单中。2019年7月23日,铅被列入有毒有害水污染物名录(第一批)。

环境中的铅通常来自火山爆发和森林火灾等自然来源,以及铅冶炼和采矿、电 池生产和加工、含铅汽油的燃烧排放和煤炭燃烧等人为来源。铅可以在各种环境介 质中积累,并最终通过空气、水、食物,土壤、灰尘等介质进入人体,以摄入、吸 入和皮肤接触等暴露途径对人体尤其是儿童健康造成严重损害。

研究表明,高水平铅暴露会危害人体多个器官和组织,特别是中枢神经系统、心血管系统,并对儿童的智力和生长发育造成损害。在影响全球死亡和疾病负担的87种风险因素中,铅是排名前20名中唯一的重金属。铅不存在安全阈值,再低的血铅水平也会对儿童健康造成不可逆转的影响。相对于成人而言,儿童由于其特殊的"手一口"行为模式,以及对铅更高的吸收率和更低的排泄量等生理特征,是铅中毒的易感人群。

2.2 相关环保标准和环保工作的需要

伴随着经济社会的高速发展,我国土壤重金属污染情况日趋严重。土壤铅污染可通过食物链进入人体,危害健康,已引起社会公众的广泛关注。土壤铅污染主要来源有汽油燃烧、冶炼烟尘,开矿、冶炼产生的废水和废渣等,降水、降尘、地面径流都可以将铅带入土壤中。广东省近年来就相继发生了清远、韶关等多起"儿童血铅污染"重大事件。铅污染是社会大众极为关注的环境与健康问题,但由于人体铅暴露是多源污染、多途径暴露的综合作用结果,在处理铅污染事件工作中,仍然面临污染来源难以明确、事故责任方难以落实等难题,给铅暴露来源解析工作带来较大挑战。如何准确、快速地识别污染源并弄清其迁移路径是土壤铅污染防治的关键问题。

2016年12月底,广东省人民政府正式发布《广东省人民政府关于印发广东省土壤污染防治行动计划实施方案的通知》(粤府〔2016〕145号),其中第三十二条要求,加强科技支撑,开展广东省土壤环境基准、污染源分析等研究。随着 MC-ICP-MS分析技术发展和应用实现了高精度的铅同位素分析测试,铅同位素示踪法已逐渐成为定量解析土壤重金属污染源的一项重要技术。

铅在自然界中存在四个稳定同位素 ²⁰⁴Pb、²⁰⁶Pb、²⁰⁷Pb 和 ²⁰⁸Pb, 丰度分别为 1.4%、 24.1%、22.1%和 52.3%。其中,除 ²⁰⁴Pb 以外,其它三个同位素均是放射性衰变成因的。在自然状态下,不同的来源或储库之间的 Pb 同位素组成存在差异;在人为活动铅同位素几乎不会发生分馏或分馏很小,这样环境样品会很好地保留污染源铅同位

素信号。因此,铅同位素是较为理想的示踪剂,可用来示踪环境铅污染的来源迁移、转化与归宿等过程。为配合贯彻《广东省土壤污染防治行动计划实施方案》,支撑土壤污染源解析工作,规范土壤环境中铅同位素的测试方法,制定土壤和沉积物中铅同位素测定标准刻不容缓。

2.3 现行环境监测分析方法标准的实施情况和存在问题

2.3.1 现行污染物分析方法标准的局限性

目前国内外尚无土壤和沉积物的铅同位素测定标准方法。只能借鉴地质行业的标准"岩石中铅、锶、钕同位素测定方法"(GB/T 17672-1999)、"岩石、矿物中微量铅的同位素组成的测定"(DZT 0184.12-1997)和"颗粒锆石铀铅同位素地质年龄测定"(DZT 0184.3-1997)。但是由于上述方法中样品介质不同,分析仪器性能落后等诸多问题,不能满足现今工作要求。

2.3.2 污染物分析仪器、设备、方法等的最新进展

铅同位素测定主要采用电感耦合等离子体质谱仪(ICP-MS)、热表面电离质谱仪(TIMS)和多接收电感耦合等离子体质谱仪(MC-ICP-MS)。与传统的 ICP-MS、TIMS 比较,MC-ICP-MS 质谱仪离子源的电离效率高、分析速度快、精密度高,在同位素测定具有巨大的优势,目前国内外铅同位素测定主要采用 MC-ICP-MS 分析测试方法。

3. 国内外相关分析方法研究

3.1 国内外铅同位素测定标准情况概述

涉及铅同位素测定的方法的标准主要有7个,其中国外1个,由美国给水工程协会发布。国内发布6个,包括2个国标,4个行业标准。具体见表1所示。

	农1 国内外节问业系则足协作力公用机构比									
序号	标准名称	标准号	发布单位	分析仪器	发布日期	适用 样品类 型				
1	Determination of Stable Lead Isotopes in Sequentially Obtained Tap Water Samples by Inductively Coupled Plasma Mass Spectrometry	AWWA ACE941 69	美国给水工程协 会(US-AWWA)	ICP-MS	1994-01-01	水样				

表1 国内外铅同位素测定标准方法情况对比

序号	标准名称	标准号	发布单位	分析仪器	发布日期	适用 样品类 型
2	水中锌、铅同位素 丰度比的测定多 接收电感耦合等 离子体质谱法	GB/T 31231-2 014	中华人民共和国 国家质量监督检 验检疫总局、中国 国家标准化管理 委员会	MC-ICP-M S	2014-09-30	水样
3	岩石中铅、锶、钕 同位素测定方法	GB/T 17672-1 999	国家质量技术监 督局	I TIMS		岩石
4	岩石、矿物中微量 铅的同位素组成 的测定	DZT018 4.12-199 7	中华人民共和国 地质矿产部	/	1997-07-01	矿物、岩 石
5	颗粒锆石铀铅同 位素地质年龄测 定	DZT 0184.3-1 997	中华人民共和国 地质矿产部	TIMS	1997-07-01	单矿物
6	含铀岩石中铅同 位素发射光谱测 定	EJ/T 860-199 4	核工业	核工业 /		岩石
7	锆石铀一铅同位 素地质年龄测定	EJ/T 756-199 3	核工业	/	1993-04-14	单矿物

3.2 主要国家、地区及国际组织相关分析方法研究

美国给水工程协会(US-AWWA)发布的标准号为 AWWA ACE94169,名字为 "Determination of Stable Lead Isotopes in Sequentially Obtained Tap Water Samples by Inductively Coupled Plasma Mass Spectrometry",主要是利用电感耦合等离子体质谱法(ICP-MS)进行铅同位素分析,确定自来水中铅的来源。

国外土壤和沉积物中铅同位素测定样品的消解方法主要有高压密闭消解罐、常规电热板 PFA 溶解和马弗炉灰化法等。不同的酸搭配消解样品常用有:硝酸、硝酸-氢氟酸、盐酸-硝酸、硝酸-氢氟酸-高氯酸和王水等,目前没有建立统一的标准。

目前国外使用的铅同位素分离富集方法有三种:(1)利用阴离子交换树脂分离法(e.g., Woodhead, 2002; Kuritani and Nakamura, 2002; Tanimizu and Ishikawa, 2006; Weis and Kieffer, 2006; Taylor et al., 2015),采用盐酸-氢溴酸淋洗富集,流程本底低,操作简单。(2)利用 Sr 特效树脂分离法(e.g., Gale, 1996; Deniel and Pin, 2001;李潮峰等,2011),采用盐酸-硝酸淋洗富集,流程本底也低。(3)使用 Pb 特效树脂分离的技术(Honvitz et al., 1994),但该法流程本底较高,仅适用于 Pb 含量较高的矿物或矿石。Pb 特效树脂法由于本底较高,仅适用于 Pb 含量高的样品。Sr 特效树脂法

不仅可以分离 Pb 同位素,而且可以同时分离 Sr 同位素,但是树脂价格较为昂贵, 而且树脂基本不重复使用。阴离子交换树脂法操作简单,本底低,应用较为广泛。

在仪器测量过程中,主要采用两种校正方法进行质量歧视校正,即元素外标法和双稀释剂法。其中,元素外标法选用铊做外标元素来校正仪器的同位素分馏效应,大部分采用 NIST SRM 997 作铊外标。双稀释剂法中使用 ²⁰⁷Pb-²⁰⁴Pb 作为双稀释剂来校正仪器的同位素分馏效应。两方法各有优劣,但都能有效的校正仪器的同位素分馏效应。双稀释剂法被认为是最科学最准确的分馏校正方法,但是该方法的分析效率比较低,一个样品一般要测试两次,一次不加双稀释剂,一次加双稀释剂。元素外标法就是在待测 Pb 溶液中加入 Tl 元素,通过监控 Tl 的同位素仪器质量分馏来校正 Pb 同位素的质量分馏。由于自然界中铊只有两种同位素 ²⁰³Tl 和 ²⁰⁵Tl,而且这两个同位素都是稳定同位素,并且与 Pb 的质量数接近,非常适合作为 Pb 同位素仪器校正的方法,而且校正过程更加简单,应用更广泛。

3.2 国内相关分析方法研究

我国目前暂无针对土壤和沉积物中铅同位素测定标准。已制定的与铅同位素测定方法标准相关的标准有:"水中锌、铅同位素丰度比的测定多接收电感耦合等离子体质谱法"(GB/T 31231-2014)、"岩石中铅、锶、钕同位素测定方法"(GB/T 17672-1999)、"岩石、矿物中微量铅的同位素组成的测定"(DZT 0184.12-1997)、"颗粒锆石铀铅同位素地质年龄测定"(DZT 0184.3-1997)、含铀岩石中铅同位素发射光谱测定(EJ/T 860-1994)和锆石铀一铅同位素地质年龄测定(EJ/T 756-1993)。

"水中锌、铅同位素丰度比的测定多接收电感耦合等离子体质谱法"(GB/T 31231-2014)只是针对多接收电感耦合等离子体质谱仪上机分析测试铅同位素比值的标准,没有涉及样品前处理、分离和纯化的方法。"岩石中铅、锶、钕同位素测定方法"(GB/T 17672-1999)和"岩石、矿物中微量铅的同位素组成的测定"(DZT 0184.12-1997)两个标准均是针对岩石介质中铅同位素比值测定的。消解方式均采用电热板加热,不同岩石和矿物种类消解体系不同。铅元素在氢溴酸-盐酸体系采用阴离子交换树脂分离和纯化,分别采用热表面电离质谱计和热离子发射质谱计。

"颗粒锆石铀铅同位素地质年龄测定"(DZT 0184.3-1997)适用于单颗粒锆石(及

斜锆石)铀一铅同位素地质年龄的测定。样品经稀酸处理除去杂质,采用高压密闭消解罐在氢氟酸-硝酸体系下消解。铅元素在盐酸体系采用阴离子交换法色谱分离和纯化,用热表面电离质谱计测定铅同位素比值。

随着 MC-ICP-MS 的发展和逐渐完善,其 ICP 离子源的温度为 700—1000K,几乎能将周期表中所有元素同时电离,与热表面电离质谱计和热离子发射质谱计相比在测定同位素组成上具有明显的优势,因此,近几年越来越多的国内科研工作者应用该技术测定铅同位素组成,并已发表了大量的分析结果。

国内土壤和沉积物中铅同位素测定的样品消解方法主要有电热板 PFA 杯子消解 法和高压密闭罐消解。电热板 PFA 杯子消解方法是较为传统的消解方法,具有价格 便宜、操作简单和普及率高等优点。高压密闭消解具有用酸量少、成本相对低廉和 消解能力强等优点,但消解耗时,且有一定操作危险。

国内土壤和沉积物中铅同位素测定的分离和纯化方法主要为采用阴离子交换树脂分离,在标准 GB/T 17672-1999 和 DZT 0184.12-1997 均采用这种方法。

国内土壤和沉积物中铅同位素测定的仪器校正方法主要是采用元素外标法。通过在分离富集的 Pb 待测溶液中加入 Tl 元素标准溶液,利用 ²⁰⁵Tl/²⁰³Tl 同位素的测量值进行仪器的质量分馏校正,标准 GB/T 31231-2014 中的方法就是用元素外标法来校正 Pb 同位素的仪器质量分馏。虽然 Pb 双稀释剂法仪器校准效果更好,由于 Pb 双稀释剂稀缺,价格昂贵,在国内很难采购到;另外双稀释剂标定工作较困难,目前国内只有中国地质大学(北京)实验室有报道采用 Pb 双稀释剂法校正 Pb 同位素。

4. 标准制修订的基本原则和技术路线

4.1 标准制修订的基本原则

标准在编写过程中满足以下几个原则:

- (1) 测定范围满足相关环保标准和环保工作的要求。
- (2) 方法准确可靠,满足各项方法特性指标的要求。
- (3) 方法具有普遍适用性,易于推广使用。
- (4) 按照GB/T 1.1-2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》、GB/T 20001.4-2015《标准编写规则 第4部分:化学分析方法》和HJ 168-2020《环境监测分析方法标准制修订技术导则》的要求编写。

4.2 标准的适用范围和主要技术内容

4.2.1 标准的适用范围

本标准规定了土壤和沉积物中铅同位素的多接收电感耦合等离子体质谱仪(MC-ICP-MS)分析法。

本标准适用于土壤和沉积物中铅同位素的测定。

本标准的方法受仪器灵敏度、稳定性以及样品中铅含量水平等干扰因素影响。

4.2.2 标准的主要技术内容

Pb 同位素在 Pb 元素的源示踪和地球化学迁移过程等研究中起到重要的作用。本标准适用于土壤和沉积物中 Pb 同位素比值测定,其中主要技术内容包括:首先建立土壤和沉积物中 Pb 同位素测定前样品前处理方法:包括方法筛选优化消解操作条件;接着建立 Pb 元素的分离和纯化方法:包括方法筛选、优化分离和纯化操作条件;最后建立测定高精度的 Pb 同位素的分析方法。

4.3 标准制修订的技术路线

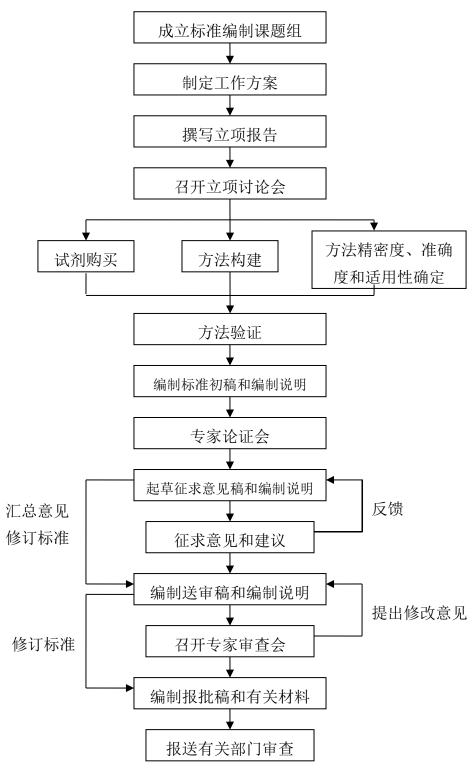


图 1 本标准制定过程的技术路线

5. 方法研究报告

5.1 方法研究的目标

- (1)制定《土壤和沉积物中铅同位素测定方法一多接收电感耦合等离子体质谱法》标准,规范土壤和沉积物中铅同位素分析技术。建立的标准监测方法将适用于不同性质土壤中 Pb 的监测和污染控制,填补国内外土壤和沉积物中 Pb 同位素测定标准的空白。
- (2)提高土壤和沉积物中Pb溯源分析技术,为开展土壤源解析技术提供技术保障,提升广东省土壤和沉积物重金属防控能力。

5.2 方法原理

称适量的土壤或沉积物样品粉末在 PFA 材质的溶样杯中,利用浓 HNO₃、浓 HF、浓 HCl 和 H_2O_2 等溶解样品;将样品转为 HBr 体系,用 0.5 mL 0.6 N HBr 溶解样品后 离心。取含 Pb 上清液进行化学分离后,将得到的 Pb 溶液转为硝酸体系,溶解在 2% 硝酸溶液介质中。为校正 MC-ICP-MS 测试过程中的仪器质量分馏,需要在 Pb 溶液中加入合适的 NIST SRM 997 Tl 标准溶液(Pb/Tl=10:1).

5.3 试剂和材料

5.3.1 实验用水

实验室用的水电阻率均大于 18.25 MΩ, 其采用 MillQ (Millipore, Bedford, MA, USA) 装置纯化。

5.3.2 试剂

优级纯的浓 HCl,HF 和浓 HNO3 都购买自北京化学试剂公司。浓 HCl,HF 和 HNO3 都经 Savillex DST 1000 亚沸蒸馏器蒸馏两次制得。双氧水 $(H_2O_2, 35\% \text{ wt./wt.})$ 和氢氧化钠 (NaOH) 标准溶液均购买自从 Fisher Scientific 公司,为 optimal 级别。 阴离子交换树脂 AG 1-X8(200-400 mesh)和约 3 ml 聚丙烯柱(8.0 mm 直径;长度为 6.0 cm)均购买自美国的伯乐公司(Bio-Rad)。新开封的 AG 1-X8 树脂需先浸泡在 4 N HCl 溶液约 8 h,树脂沉淀后倒出上清液,加入适量的 Milli-Q H₂O,充分摇匀并浸泡 4 h,沉淀后倒出上清液,如此反复用 4 N HCl 和 Milli-Q H₂O 交替清洗 3 次,最终将树脂保存在 Milli-Q H₂O 中。

5.3.3 标准物质

Pb 国际标准溶液(NIST SRM 981Pb)和国际 Tl 标准溶液(NIST SRM 997Tl) 均购买自美国国家标准与技术研究所(National Institute of Standards and Technology)。

5.3.4 实验器皿

实验过程使用的移液枪头、离心管等先用 Milli-Q H₂O 冲洗 3 次后,先使用 5% HNO₃(v/v) 在 70 ℃的电热板煮 8 h,用 Milli-Q H₂O 冲洗 3 次后,接着用 Milli-Q H₂O 在 70 ℃的电热板煮 8 h,晾干后待用。聚四氟乙烯材质溶样杯(Savillex PFA)(容积分别有 7,15 和 22ml)的清洗步骤如下(刘芳,2018):①棉花蘸酒精擦拭杯子的标签,杯盖和杯子内外壁用洗洁精反复擦洗,以除去残余样品和油脂;②杯子放入装有洗洁精的大烧杯,在 120 ℃的电热板煮 6 h,冷却后,倒掉洗洁精溶液,去离子水冲洗 3 遍;③逐次用一次 1:1 (v/v) HNO₃、一次 1:1 (v/v) HCl 和二次 1:1 (v/v) HNO₃ 煮洗杯子,溶液液面淹没且高于杯子 2 cm 以上,在 120 ℃的电热板煮 6 h 以上,每次换用不同酸的间隙用去离子水清洗杯子 3 次。④每个杯子中加入 1~2 ml 的二次纯化的 1:1 (v/v) HCl 或 HNO₃,拧紧盖子在电热板回流大概 4 h,旋转杯子观察溶液能否在杯壁内自由转动,则表明杯子清洗干净,将酸倒入废酸桶,杯子用 Milli-Q H2O冲洗干净即。

5.3.5 实验用气

MC-ICP-MS 实验测试过程中需要用到氩气(Ar),纯度为99.999%。

5.4 仪器和设备

铅同位素的测定在配有 9 个或 9 个以上的法拉第杯接收器 MC-ICP-MS 上进行。 其他还需要用到的前处理设备主要为转速大于 4000r/min 的离心机, 所有接触液体的 部件均为注塑的聚四氟乙烯材质的全封闭型亚沸蒸馏器, 喷涂聚四氟乙烯防腐涂层 的电热板等。

5.5 样品处理和仪器分析步骤

5.5.1 确定土壤和沉积物样品消解方法

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯(PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140° C下加热反应 10-12 小时。加热结束后,开盖, 110° C在电热板上蒸干,再依次

加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟 (等待上样)。

5.5.2 优化土壤和沉积物中铅的分离提纯步骤

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110℃加热蒸干,待溶样杯冷却至室温,加入 1 mL 2%HNO3 溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

阴离子树脂分离程序只需要使用到两种酸,能达到高的 Pb 回收率,且树脂可以重复使用,因此阴离子交换树脂法(图 2 和表 2)适合用来分离土壤和沉积物的 Pb 同位素。

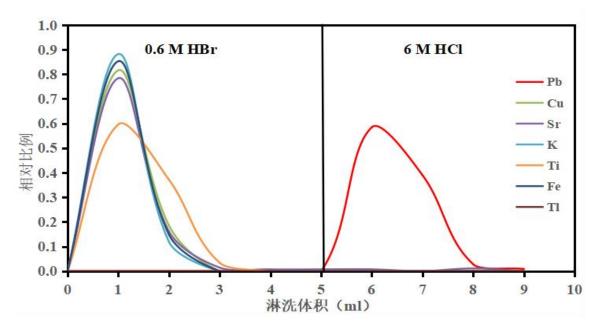


图 2 Pb 化学分离曲线 (阴离子交换树脂 AG1-X8, 100-200 目; 0.25ml)

表 2 阴离子交换树脂 AG1-X8(200-400 目)的 Pb 分离流程

步骤	体积 ml	目的						
0.25 ml 阴离子交换树脂 AG1-X8(200-400 目)								
Milli-Q 水	3	交叉洗三次						
6 M HCl	3	文义杌三仈						
0.6 M HBr	2 (0.5×4)	平衡树脂						
0.6 M HBr	1	上样						
0.6 M HBr	4	洗脱基质						
6 M HCl	4	接 Pb						

5.5.3 优化仪器分析方法

本标准制订过程中铅同位素的测定主要在 Thermo-Fisher Scientific 公司生产的 Neptune Plus MC-ICP-MS 上进行。在测试之前,需要先把 Neptune Plus MC-ICP-MS 调整至较好的测试状态,比如 Pb 同位素的信号,同位素接收峰的峰型等。Pb 同位素 测试的杯结构分别为: Low3 (²⁰²Hg),Low2 (²⁰³Tl),Low1 (²⁰⁴Pb),C (²⁰⁵Tl),High1 (²⁰⁶Pb),High2 (²⁰⁷Pb),High3 (²⁰⁸Pb)。Neptune Plus MC-ICP-MS 在测试时的工作参数 详见表 3。100 ppb 的 NBS 981 Pb 标准溶液对应 ²⁰⁸Pb 的信号~6.72V。²⁰⁸Pb 同位素 的测试信号强度介于 4~8V 都可以获得很好精度和准确度的 Pb 同位素数据。

表 3 Neptune Plus MC-ICP-MS 工作参数

工作参数	调整值
~ 冷却器流量/(L·min⁻¹)	16
辅助气流量/(L·min ⁻¹)	0.85
射频功率/W	1148
积分时间(s)	3
进样速度	100 μL/min
每组测量次数	60
测量组数	1

在测试样品前,需要先准确测试 NBS 981 Pb 纯标准溶液,同时测样过程中每间隔 5 个样品也需要测试 NBS 981 Pb 纯标准溶液以确定测样前和测样过程中仪器保持稳定。由表 4 可知,NBS 981 Pb 纯标准溶液的 Pb 同位素比值的内部精度约 0.04%~

0.19% (2SE), Pb 同位素比值均与文献值在误差范围内一致,说明 Neptune Plus MC-ICP-MS 测试过程的稳定可靠。

表 4 NBS 981 标样 Pb 同位素比值与文献对比

仪器	²⁰⁶ Pb/ ²⁰⁴ Pb	2SE	²⁰⁷ Pb/ ²⁰⁴ Pb	2SE	²⁰⁸ Pb/ ²⁰⁴ Pb	2SE	参考文献
/	16.9319	0.0008	15.4844	0.0007	36.6788	0.0019	/
/	16.9323	0.0006	15.4856	0.0006	36.6813	0.0016	/
/	16.9323	0.0005	15.4859	0.0005	36.6817	0.0013	/
/	16.9342	0.0005	15.4868	0.0005	36.6851	0.0014	/
/	16.9351	0.0006	15.4874	0.0005	36.6867	0.0013	/
/	16.9329	0.0004	15.4858	0.0004	36.6827	0.0010	/
/	16.9331	0.0005	15.4860	0.0005	36.6825	0.0012	/
/	16.9342	0.0004	15.4869	0.0004	36.6850	0.0010	/
/	16.9330	0.0004	15.4861	0.0004	36.6826	0.0011	/
/	16.9340	0.0004	15.4863	0.0004	36.6846	0.0009	/
/	16.9337	0.0004	15.4859	0.0004	36.6840	0.0011	/
/	16.9340	0.0004	15.4863	0.0004	36.6840	0.0010	/
/	16.9342	0.0004	15.4868	0.0004	36.6847	0.0011	/
/	16.9347	0.0004	15.4870	0.0004	36.6861	0.0010	/
							本实验
/	16.9336	0.0019	15.4862	0.0014	36.6837	0.0044	(Mean ±
							2SD ^a)
TIMS	16.937	0.011	15.491	0.015	36.721	0.036	Certified
111/15	10.937	0.011	13.491	0.013	30.721	0.030	values ^b
							(Walder
ICP-MS ^a	16.939	0.010	15.494	0.008	36.693	0.021	and
ICF-MS	10.939	0.010	13.494	0.008	30.093	0.021	Furuta,
							1993)
TIMS	16.9356	0.0023	15.4891	0.0030	36.7006	0.0112	(Todt et
111/15	10.9330	0.0023	13.4091	0.0030	30.7000	0.0112	al., 1996)
ICP-MS ^a	16 9271	0 0000	15 4760		36.6420	0.0200	(Hirata,
TCI -WIS	10.74/1	16.9271 0.0090	15.4769		30.0 1 20	0.0200	1996)
ICP-MS ^a	16.9379	0.0053	15.4922	0.0047	36.6961	0.0113	(Rehkamp
	10.7377	0.0055	13.7722	0.007/	30.0701	0.0113	er and

	²⁰⁶ Pb/ ²⁰⁴ Pb	2SE	²⁰⁷ Pb/ ²⁰⁴ Pb	2SE	²⁰⁸ Pb/ ²⁰⁴ Pb	2SE	参考文献
							Halliday,1
							998)
							(Galer and
TIMS	16.9405	0.0015	15.4963	0.0015	36.722	0.004	Aboucha
							mi, 1998)
							(Rehkamp
ICP-MS ^a	16.9498	0.0059	15.5081	0.0014	0.0014 36.7570	0.0044	er and
ICP-IVIS"				0.0014			Mezger,
							2000)
Micromass IsoProbe MC-ICP-MS	16.9417	0.0029	15.4996	0.0031	36.724	0.009	(Thirlwall, 2002)
N. DI							(Kamenov
Nu Plasma MC-ICP-MS	16.9373	0.0011	15.4907	0.0012	36.6935	0.0039	et al.,
MIC-ICP-MIS							2004)
TIMS	16.886	0.006	15 422	0.008	26.496	0.022	(李潮锋
	10.880	0.006	15.423	0.008	36.486	0.023	等,2011)
Nu II	16.9432	0.0058	15.4987	0.0023	36.7285	0.0112	(Wu et al.,
MC-ICP-MS	10.9434	0.0038	13.490/	0.0023	30.7263	0.0112	2017)

^a Plasma 54 MC-ICP-MS

5.5.4 实验室空白测试

为了监控实验全流程空白,在处理标准土壤和沉积物样品过程中,我们同时增加处理两个空白样品(Blank 1 和 Blank 2)。除了没有称入样品外,空白样品和实际标样的其他处理步骤完全一致,包括加同样种类和体积的酸,进行化学分离实验,到最后用 3%HNO₃ 定容。在已经调试好的 MC-ICP-MS 仪器上,先测试 200 ppb 浓度的 NIST 987 Pb 标样,并记录 Pb 同位素的信号,然后用两个 3%HNO₃ 溶液一次洗干净 Pb 同位素的信号后,再测试空白样品的 Pb 同位素的信号;对比 NIST 987 Pb 标样和空白样品的信号后,估计空白样品的 Pb 浓度约 80 pg。相对样品 500 ng 的上样量,空白 Pb 的影响可以忽略不计。

^bCatanzaro et al. (1968)

5.5.5 平行试验

每批样品测试时应包含样品总数 10%的平行样品。

5.5.6 结果计算和表示

5.5.6.1 质量分馏校正

Pb 同位素在仪器测试过程中的质量分馏可以采用双稀释剂法(e.g., Todt et al., 1996; White et al., 2000; Thirlwall et al., 2002; Wu et al., 2017)和元素外标法(e.g., Rehkamper and Halliday, 1998; Rehkamper and Mezger, 2000; Kamenov et al., 2004),而后者是最常用的校正方法。本文件中 Neptune Plus MC-ICP-MS 测试过程中的质量歧视效应采用外标法进行校正。按 Pb: Tl=10:1 比例,在 NBS 981 Pb 溶液和要分析的样品中加入适量的已知 Tl 同位素比值的 SRM 997 Tl。此方法是假设外标元素 Tl 与Pb 元素在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素比值的可求出测试过程中仪器的分馏因子,进而校正仪器测试 Pb 同位素过程中的分馏。

Pb 同位素在仪器测试过程中的质量分馏采用元素外标法,即在待测 Pb 样品溶液和 Pb 标准溶液中加入 Tl 标准溶液,通过在线监控 Tl 同位素来对仪器的分馏进行校正。此方法是假设外标元素 Tl 与 Pb 元素在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素比值和指数分馏校正定律可求出测试过程中仪器的分馏因子,进而校正仪器测试 Pb 同位素过程中的分馏,具体计算方法如下:

$$(^{205}\text{Tl}/^{203}\text{Tl})_{\text{true}}/(^{205}\text{Tl}/^{203}\text{Tl})_{\text{meas}} = (M_{205}/M_{203})^{\beta\text{Tl}}$$
 (1)

$$(^{X}Pb/^{204} Pb)_{true}/(^{X}Pb/^{204} Pb)_{meas} = (M_{X}/M_{204})^{\beta Pb}$$
 (2)

其中, β_{Tl} 和 β_{Pb} 分别是Tl和Pb的仪器质量分馏因子;(205 Tl/ 203 Tl) $_{\text{meas}}$ 和(20x Pb/ 204 Pb) $_{\text{meas}}$ 分别是Tl和Pb同位素比值的测量值;(205 Tl/ 203 Tl) $_{\text{true}}$ 和(20x Pb/ 204 Pb) $_{\text{true}}$ 分别是Tl和Pb同位素比值的校正值(真实值),其中需要定义一个已知标准溶液中的(205 Tl/ 203 Tl) $_{\text{true}}$ 值;M为Tl或Pb同位素的质量数,X指Pb的同位素206,207和208。

5.5.6.2 结果计算和表示

根据公式(1)可求得 β_{Tl} = ln[($^{205}Tl/^{203}Tl$)_{true}/($^{205}Tl/^{203}Tl$)_{meas}]/ln[(M_{205}/M_{203})],定义 β_{Tl} = β_{Pb} ,代入公式(2)可得 β_{Tl} = β_{Pb} =ln[($^{20X}Pb/^{204}$ Pb)_{true}/($^{20X}Pb/^{204}$ Pb)_{meas}]/ln[(M_{20X}/M_{204})],

最后利用(3)式可求得样品真实的Pb同位素比值:

$$(^{X}Pb/^{204} Pb)_{true} = (^{X}Pb/^{204} Pb)_{meas} \times (M_{X}/M_{204})^{\beta Pb}$$
 (3)

Pb 同位素比值保留至小数点第四位,按 ²⁰⁶Pb/²⁰⁴Pb±2SD、 ²⁰⁷Pb/²⁰⁴Pb±2SD、 ²⁰⁸Pb/²⁰⁴Pb±2SD 和 ²⁰⁷Pb/²⁰⁶Pb±2SD 表示。

5.5.7 方法精密度和正确度

为了验证本文件所优化的 Pb 分析流程的适用性和稳定性, 六种不同基体的岩石, 土壤和沉积物标准样品被采用, 每种标样平行处理五份。由表 5 可知, 在误差范围之内, 土壤样品 1 的 Pb 同位素比值均与前人的报道一致, 表明本文件推荐的 Pb 化学分离流程和 Pb 同位素的 MC-ICP-MS 测试分析方法稳定可靠。土壤样品 3, 土壤样品 4 和土壤样品 5, 以及沉积物样品和土壤样品 2 是首次被报道 Pb 同位素比值。土壤和沉积物标样的各五份平行分析的 Pb 同位素比值在误差范围内有很好的一致性(表 5), 证明本文件推荐的 Pb 化学分离流程和 Pb 同位素的 MC-ICP-MS 测试分析方法完全能够满足土壤和沉积物样品的高精度 Pb 同位素分析的要求。

重复分析土壤样品 3 得到的平均 Pb 同位素比值分别为:

206Pb/204Pb=21.1977±0.0170 , 206Pb/204Pb=15.8128±0.0018 和

206Pb/204Pb=38.9896±0.0117。

重复分析土壤样品 4 得到的平均 Pb 同位素比值分别为:

206Pb/204Pb=18.7305±0.0017 , 206Pb/204Pb=15.7395±0.0044 和

206Pb/204Pb=39.0656±0.0098。

重复分析土壤样品 5 得到的平均 Pb 同位素比值分别为:

²⁰⁶Pb/²⁰⁴Pb=18.6681±0.0068 , ²⁰⁶Pb/²⁰⁴Pb=15.6345±0.0020 和

²⁰⁶Pb/²⁰⁴Pb=38.8238±0.0046。

重复分析沉积物样品得到的平均 Pb 同位素比值分别为:
206Pb/204Pb=18.5953±0.0174 , 206Pb/204Pb=15.6535±0.0060 和
206Pb/204Pb=38.7368±0.0181。

重复分析土壤样品 2 得到的平均 Pb 同位素比值分别为:

²⁰⁶Pb/²⁰⁴Pb=18.6817±0.0114 , ²⁰⁶Pb/²⁰⁴Pb=15.6375±0.0032 和

²⁰⁶Pb/²⁰⁴Pb=38.7312±0.0117。

表 5 标样 Pb 同位素比值与文献的 Pb 同位素比值对比

标样	²⁰⁶ Pb/ ²⁰⁴ Pb	2SE	²⁰⁷ Pb/ ²⁰⁴ Pb	2SE	²⁰⁸ Pb/ ²⁰⁴ Pb	2SE	参考文献
土壤样品 1	18.8690	0.0006	15.6102	0.0006	38.5241	0.0015	/
/	18.8590	0.0007	15.6102	0.0007	38.5099	0.0016	/
/	18.8591	0.0007	15.6092	0.0006	38.5085	0.0015	/
/	18.8550	0.0013	15.6087	0.0012	38.5050	0.0030	/
/	18.8604	0.0008	15.6094	0.0007	38.5075	0.0019	/
Mean ± 2SD ^a	18.8605	0.0103	15.6094	0.0013	38.5075	0.0151a	本实验
/	18.864	0.007	15.609	0.006	38.511	0.020	(Woodhea and Hergt, 2000)
/	18.873	0.005	15.621	0.003	38.552	0.010	(Baker et al., 2004)
/	18.8688	0.0063	15.6173	0.0071	38.5443	0.0135	(Weis and Kieffer, 2006)
/	18.870	0.004	15.624	0.003	38.570	0.008	(李潮锋等, 2011)
土壤样品3	21.2101	0.0008	15.8133	0.0007	38.9879	0.0018	/
/	21.2013	0.0008	15.8123	0.0007	38.9821	0.0017	/
/	21.1943	0.0007	15.8119	0.0007	38.9813	0.0017	/
/	21.1874	0.0012	15.8124	0.0009	38.9958	0.0023	/
/	21.1951	0.0011	15.8141	0.0009	39.0008	0.0022	/
Mean ± 2SD ^a	21.1977	0.0170	15.8128	0.0018	38.9896	0.0117ª	本实验
土壤样品 4	18.7318	0.0005	15.7381	0.0005	39.0627	0.0013	/
/	18.7297	0.0006	15.7378	0.0006	39.0619	0.0016	/
/	18.7300	0.0008	15.7376	0.0005	39.0615	0.0012	/
/	18.7307	0.0006	15.7416	0.0006	39.0703	0.0014	/
/	18.7302	0.0018	15.7420	0.0014	39.0715	0.0033	/
Mean ± 2SD ^a	18.7305	0.0017	15.7395	0.0044	39.0656	0.0098ª	本实验
土壤样品 5	18.6707	0.0009	15.6337	0.0008	38.8222	0.0022	/
/	18.6722	0.0007	15.6352	0.0006	38.8236	0.0016	/

标样	²⁰⁶ Pb/ ²⁰⁴ Pb	2SE	²⁰⁷ Pb/ ²⁰⁴ Pb	2SE	208 Pb/ 204 Pb	2SE	参考文献
/	18.6677	0.0008	15.6357	0.0008	38.8278	0.0021	/
/	18.6652	0.0006	15.6338	0.0006	38.8230	0.0015	/
/	18.6644	0.0012	15.6337	0.0011	38.8224	0.0028	/
Mean ± 2SD ^a	18.6681	0.0068	15.6345	0.0020 a	38.8238	0.0046ª	本实验
沉积物样 品	18.6095	0.0007	15.6498	0.0006	38.7259	0.0017	/
/	18.5978	0.0006	15.6506	0.0006	38.7278	0.0017	/
/	18.5892	0.0008	15.6558	0.0007	38.7431	0.0018	/
/	18.5896	0.0006	15.6557	0.0005	38.7434	0.0015	/
/	18.5901	0.0005	15.6556	0.0005	38.7435	0.0013	/
Mean ± 2SD ^a	18.5953	0.0174	15.6535	0.0060	38.7368	0.0181	/
土壤样品 2	18.6854	0.0005	15.6359	0.0005	38.7269	0.0014	/
/	18.6890	0.0006	15.6382	0.0005	38.7392	0.0014	/
/	18.6813	0.0006	15.6356	0.0006	38.7246	0.0013	/
/	18.6754	0.0010	15.6383	0.0009	38.7304	0.0022	/
/	18.6770	0.0010	15.6393	0.0009	38.7346	0.0024	/
Mean ± 2SD ^a	18.6817	0.0114	15.6375	0.0032	38.7312	0.0117ª	本实验

^{*}多次测量结果的2倍标准偏差

6. 方法验证

6.1 参与方法验证的实验室基本情况

本标准编制组按照《环境监测 分析方法标准制修订技术导则》(HJ/T168 - 2020)和《国家环境污染物监测方法标准制修订工作暂行要求》(环科函〔2009〕10号)的要求,通过筛选,最终选定河北地质大学、西北大学、中国科学院广州地球化学研究所、南京大学和桂林理工大学 6 家具有金属同位素测试条件的实验室对本标准方法进行验证。具体情况详见表 6、表 7、表 8。

表 6 方法验证实验室及人员情况

验证单位	姓名	性别	年龄	职务或职称	所学专业	从事相关分析 工作年限
河北地质大学	尹露	男	34	助理研究员	地球化学	5
五小十二	宗春蕾	女	40	工程师	地球化学	18
西北大学	包志安	男	36	高级工程师	地球化学	11
中国科学院广州地球化	彭冰钰	女	24	实验助理	地球化学	2
学研究所	董飞羽	女	27	实验助理	地球化学	4
南京大学	杨涛	男	42	副教授	地质学	15
桂林理工大学	余红霞	女	37	实验师	地球化学	9
国家地质实验测试中心	李超	男	40	研究员	地球化学	15

表 7 方法验证实验室仪器设备使用情况

验证单位	仪器名称	规格型号	仪器出厂编 号	性能状况
河北地质大学	MC-ICP-MS	Neptune Plus	SN01231N	205Tl: 0.1V/ppb
	电热板	EG20B	220219G1401 6	40-200°C
	烘箱	CS101-3EB	98064000	350°C
西北大学	离心机	M16	2.221E+13	500-16000rpm,精 度≤50rpm
四和八子	多接收器电感 耦合等离子体 质谱仪 (MC-ICP-MS)	Nu plasma II	Np210	/
	分析天平	AX105	1125253889	0.01mg—31g
中国科学院广州地球化学研究所	电感耦合等离 子体质谱仪	Neptune Plus	SN01289N	量程: 50V 灵敏 度: 205Tl 0.7V/ppb
	电热板	/	/	/
南京大学	MC-ICP-MS	Neptune plus	/	/
	电子天平	/	/	/
桂林理工大学	多接收电感耦 合等离子体质 谱仪	Neptune Plus	SN01204 N	系统稳定性 <50ppm/h,丰度 灵敏度<0.5ppm

验证单位	仪器名称	规格型号	仪器出厂编 号	性能状况
	Milli-Q 超纯水 机	Advantage A10	/	电阻率 18.2 MΩ
	蒸酸器	CleanAcids 3— 500ml	/	功率 2000W,电 源 230V 9Amp
	电热板	DBF-1,400×300m m	/	功率 2KW,电源 220V 50Hz
	离心机	MC-12plus	/	功率 45w,转速 500~12000rpm±5 %
	天平	BSA124S-CW	3137815764	Max=220g, Min=10mg, d=0.1mg, e=1mg
国家地质实验测试中	MC-ICP-MS	Neptune Plus	SN01231N	208Pb: 0.1V/ppb,X+Jet 锥
心	电热板	EH20A-plus	80515E3044	40-220°C

表 8 方法验证实验室试剂和溶剂使用情况

验证单位	名称	生产厂家、规格	 纯化处理方法 		
	硝酸	阿拉丁,GR			
河北地质大学	盐酸	阿拉丁,ACS	亚沸蒸馏纯化2次		
	氢氟酸	阿拉丁,电子级			
	饱和溴水	天津大茂,AR 级	/		
	so 与lt	大连大特气体有限公司,	1		
	SO ₂ 气体	99.9%	/		
	饱和 H ₂ SO ₃ 溶液	自制	SO ₂ 气体通入超纯水		
	也和 H2SO3 俗似		至饱和		
西北大学	盐酸	Marala A = antimal 47 Fil	/		
四礼入子	硝酸	Merck 公司、optimal 级别	/		

验证单位	名称	生产厂家、规格	纯化处理方法
	氢氟酸	Fisher Scientific 公司、optimal 级别	/
	饱和溴水	福晨(天津)化学试剂有限公司、分析纯	/
	二氧化硫标准气体	陕西沁蓝化工科技有限公司	/
	Milli-Q H ₂ O	Millipore	MILLI-Q IQ7000
	硝酸		亚沸蒸馏纯化2次
	盐酸	阿拉丁,电子级	亚沸蒸馏纯化2次
	氢氟酸		亚沸蒸馏纯化1次
中国科学院广州地球化学研究所	饱和溴水	自制	由购买自上海凌峰试 剂的液溴(AR)用超 纯水稀释至饱和制得
	饱和 H ₂ SO ₃ 溶液	自制	由购买自广州广汽的 SO_2 气体(99.9%)通 入超纯水至饱和制得
	浓 HCl		经 Savillex DST 1000
	浓 HNO3	优级纯试剂	亚沸蒸馏器蒸馏一次 至两次制得
	浓 HF	优级纯试剂	经 Savillex DST 1000 亚沸蒸馏器两次亚沸 蒸馏制得
南京大学	Milli-Q H ₂ O	/	采用 MillQ (Millipore, Bedford, MA, USA) 装置纯化
	亚硫酸	Alfa Aesar;最低含二氧化硫 6.0%	/
	溴水	永华; 3%溴水	/
	AG1-X8 离子交换树 脂	200-400 mesh, Bio-Rad	/
	NIST SRM981PB	Spex certiprep	/
桂林理工大学	GSB Tl	国家有色金属及电子材料分	/

验证单位	名称	生产厂家、规格	纯化处理方法				
		析测试中心					
	H ₂ O ₂	Fisher Scientific optimal	/				
	SiO ₂ 标准气体	大连大特气体有限公司, 99.9%	/				
	浓 HCl	上海傲班科技有限公司、37% G4					
	浓 HNO3	上海傲班科技有限公司、69% G4	/				
	浓 HF	上海傲班科技有限公司、49% G4	/				
	浓 HCl	/					
	浓 HNO3	上海傲班科技有限公司、69% G3	/				
	浓 HF	上海傲班科技有限公司、49% G3	/				
	浓 HCl	国药集团化学试剂有限公司、 37% 优级纯					
	浓 HNO3	国药集团化学试剂有限公司、 69% 优级纯	二次纯化				
	浓 HF	国药集团化学试剂有限公司、 49% 优级纯					
	硝酸	Fisher Scientific 公司、 optimal 级别	亚沸蒸馏纯化2次				
国家地质实验测	盐酸	Fisher Scientific 公司、 optimal 级别	亚沸蒸馏纯化2次				
试中心	氢氟酸	Fisher Scientific 公司、 optimal 级别	亚沸蒸馏纯化2次				
	饱和溴水	天津大茂,AR 级	/				

6.2 方法验证方案

6.2.1 方法验证内容

- (1) 方法精密度
- 6种不同含量水平的土壤样品、沉积物样品,按照全程序每个样品平行测定 6次, 分别计算不同浓度样品的平均值、标准偏差和相对标准偏差。
 - (2) 方法准确度
- 6种不同含量水平的土壤样品、沉积物样品,按照全程序每个样品平行测定 6次, 分别计算不同浓度样品的平均值和相对误差。

6.2.2 样品准备

准备了6种不同含量水平的土壤和沉积物样品,分别为土壤样品1、土壤样品2、土壤样品3、土壤样品4和土壤样品5和沉积物样品,统一分发到6家验证单位。

6.3 方法验证过程

确定方法验证单位,按照方法验证方案由编制单位统一准备实验用品。与验证单位确定验证时间。在方法验证前,组织参加验证的操作人员熟悉和掌握方法原理、操作步骤及流程。方法验证过程中所用的试剂和材料、仪器和设备及分析步骤应符合方法相关要求。

6.4 方法验证结果

6.4.1 精密度数据

6家验证单位分别对6种不同铅含量水平的土壤和沉积物样品,按照全程序每个样品平行测定6次,分别计算不同浓度样品的平均值、标准偏差和相对标准偏差,具体数据如表9-13所示。

	次,由内世系相击反侧内双始仁心(上极什m 1)											
验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb				²⁰⁷ Pb/ ²⁰⁴ Pb			²⁰⁸ Pb/ ²⁰⁴ Pb				
	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD			
中国科学院广州地	10.0712	0.0050	0.0265	15 (000	0.0000	0.0050	20.5116	0.0000	0.0170			
球化学研究所	18.8613	0.0050	0.0265	15.6098	0.0009	0.0058	38.5116	0.0069	0.0179			
西北大学	18.8642	0.0077	0.0408	15.6144	0.0004	0.0026	38.5350	0.0070	0.0182			
国家地质测试中心	18.8544	0.0057	0.0302	15.6071	0.0052	0.0333	38.5054	0.0108	0.0280			
河北地质大学	18.8621	0.0015	0.0080	15.6077	0.0021	0.0135	38.5016	0.0055	0.0143			

表 9 铅同位素精密度测试数据汇总(十壤样品 1)

桂林理工大学	18.8606	0.0011	0.0058	15.6109	0.0018	0.0115	38.5134	0.0066	0.0171		
南京大学	18.8678	0.0002	0.0011	15.6149	0.0003	0.0019	38.5277	0.0022	0.0057		
平均值		18.8617		15.6108				38.5158			
实验室间标准偏差		0.0044			0.0022			0.0120			
SD	0.0044			0.0033			0.0130				
实验室间相对标准	0.0225			0.0211			0.0337				
偏差 RSD (%)	0.0235										
重复性限 r	0.0125			0.0068			0.0195				
再现性限 R	0.0169			0.0111			0.0405				

表 10 铅同位素精密度测试数据汇总(土壤样品 3)

7人\工	2	^{.06} Pb/ ²⁰⁴ Pb		2	²⁰⁷ Pb/ ²⁰⁴ Pb			²⁰⁸ Pb/ ²⁰⁴ Pb		
验证单位	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD	
中国科学院广州地	21 1021	0.0126	0.0642	15 0127	0.0000	0.0057	20,0002	0.0002	0.0212	
球化学研究所	21.1931	0.0136	0.0642	15.8127	0.0009	0.0057	38.9882	0.0083	0.0213	
西北大学	21.2165	0.0034	0.0160	15.8221	0.0003	0.0019	39.0267	0.0026	0.0067	
国家地质测试中心	21.2038	0.0060	0.0283	15.8136	0.0019	0.0120	38.9866	0.0061	0.0156	
河北地质大学	21.2079	0.0038	0.0179	15.8102	0.0031	0.0196	38.9755	0.0096	0.0246	
桂林理工大学	21.1803	0.0087	0.0411	15.8142	0.0011	0.0070	38.9933	0.0048	0.0123	
南京大学	21.2131	0.0006	0.0028	15.8255	0.0005	0.0032	39.0269	0.0036	0.0092	
平均值		21.2025		15.8164			38.9995			
实验室间标准偏差		0.0126			0.0060			0.0010		
SD		0.0136			0.0060			0.0219		
实验室间相对标准		0.0640			0.0270		0.0562			
偏差 RSD (%)	0.0640				0.0379			0.0562		
重复性限 r	0.0205			0.0045			0.0177			
再现性限 R		0.0424		0.0173			0.0634			

表 11 铅同位素精密度测试数据汇总(土壤样品 4)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb			²⁰⁷ Pb/ ²⁰⁴ Pb			²⁰⁸ Pb/ ²⁰⁴ Pb		
巡 年 7年	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD

74 Y A P-		²⁰⁶ Pb/ ²⁰⁴ Pb	ı		²⁰⁷ Pb/ ²⁰⁴ Pb	ı		²⁰⁸ Pb/ ²⁰⁴ Pb		
验证单位	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD	
中国科学院广州地	18.7308	0.0011	0.0050	15 7205	0.0020	0.0127	20.0654	0.0044	0.0113	
球化学研究所	16./306	0.0011	0.0059	15.7395	0.0020	0.0127	39.0654	0.0044	0.0113	
西北大学	18.7420	0.0020	0.0107	15.7491	0.0003	0.0019	39.1080	0.0014	0.0036	
国家地质测试中心	18.7326	0.0034	0.0182	15.7378	0.0033	0.0210	39.0492	0.0092	0.0236	
河北地质大学	18.7331	0.0074	0.0395	15.7357	0.0015	0.0095	39.0537	0.0060	0.0154	
桂林理工大学	18.7310	0.0009	0.0048	15.7430	0.0009	0.0057	39.0758	0.0032	0.0082	
南京大学	18.7347	0.0004	0.0021	15.7454	0.0005	0.0032	39.0865	0.0034	0.0087	
平均值		18.7340		15.7418			39.0731			
实验室间标准偏差		0.0042			0.0050			0.0220		
SD		0.0042						0.0220		
实验室间相对标准		0.0222			0.0210		0.0572			
偏差 RSD (%)	0.0222			0.0319			0.0562			
重复性限 r	0.0097			0.0049			0.0146			
再现性限 R		0.0146		0.0148				0.0629		

表 12 铅同位素精密度测试数据汇总 (沉积物样品)

7人2丁 台 停		²⁰⁶ Pb/ ²⁰⁴ Pb			²⁰⁷ Pb/ ²⁰⁴ Pb		²⁰⁸ Pb/ ²⁰⁴ Pb			
验证单位	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD	
中国科学院广州地	19.5090	0.0110	0.0624	15 6524	0.0020	0.0240	29.7240	0.0002	0.0240	
球化学研究所	18.5989	0.0118	0.0634	15.6524	0.0039	0.0249	38.7349	0.0093	0.0240	
西北大学	18.6120	0.0120	0.0645	15.6581	0.0035	0.0224	38.7703	0.0071	0.0183	
国家地质测试中心	18.6096	0.0017	0.0091	15.6589	0.0036	0.0132	38.7568	0.0110	0.0284	
河北地质大学	18.6125	0.0070	0.0376	15.6531	0.0045	0.0154	38.7428	0.0208	0.0537	
桂林理工大学	18.6050	0.0023	0.0124	15.6538	0.0019	0.0657	38.7460	0.0040	0.0103	
南京大学	18.6165	0.0004	0.0021	15.6588	0.0004	0.0066	38.7658	0.0027	0.0070	
平均值		18.6091		15.6559			38.7528			
实验室间标准偏差		0.0063			0.0021			0.0120		
SD		0.0003			0.0031			0.0138		
实验室间相对标准		0.0336			0.0195			0.0357		
偏差 RSD(%)		0.0550								
重复性限 r		0.0211			0.0092			0.0305		

再现性限 R 0.0260 0.0120 0.0477

表 13 铅同位素精密度测试数据汇总(土壤样品 2)

74 Y A P-		²⁰⁶ Pb/ ²⁰⁴ Pb			²⁰⁷ Pb/ ²⁰⁴ Pb	I		²⁰⁸ Pb/ ²⁰⁴ Pb		
验证单位	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD	
中国科学院广州地	18.6801	0.0062	0.0332	15 6275	0.0015	0.0096	38.7305	0.0055	0.0142	
球化学研究所	10.0001	0.0062	0.0332	15.6375	0.0013	0.0096	38./303	0.0033	0.0142	
西北大学	18.6904	0.0124	0.0663	15.6421	0.0005	0.0032	38.7629	0.0090	0.0232	
国家地质测试中心	18.6981	0.0055	0.0294	15.6402	0.0036	0.0230	38.7277	0.0101	0.0261	
河北地质大学	18.6889	0.0024	0.0128	15.6331	0.0016	0.0102	38.7252	0.0020	0.0052	
桂林理工大学	18.6756	0.0016	0.0086	15.6392	0.0012	0.0077	38.7338	0.0039	0.0101	
南京大学	18.6892	0.0058	0.0310	15.6427	0.0003	0.0019	38.7561	0.0132	0.0341	
平均值	18.6871			15.6391				38.7394		
实验室间标准偏差		0.0080		0.0035			0.0160			
SD		0.0080								
实验室间相对标准		0.0429			0.0225			0.0412		
偏差 RSD(%)		0.0429			0.0223		0.0413			
重复性限 r		0.0186			0.0051			0.0231		
验证单位		²⁰⁶ Pb/ ²⁰⁴ Pb			²⁰⁷ Pb/ ²⁰⁴ Pb			²⁰⁸ Pb/ ²⁰⁴ Pb		
沙山、牛山	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD	
再现性限 R		0.0281			0.0109			0.0495		

表 14 铅同位素精密度测试数据汇总(土壤样品 5)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		207 Pb/ 204 Pb			²⁰⁸ Pb/ ²⁰⁴ Pb			
型	平均值	SD	RSD	平均值	SD	RSD	平均值	SD	RSD
中国科学院广州地	19 ((52	0.0076	0.0407	15 (220	0.0016	0.0102	29 9216	0.0050	0.0152
球化学研究所	18.6652	0.0076	0.0407	15.6339	0.0016	0.0102	38.8216	0.0059	0.0152
西北大学	18.6835	0.0070	0.0375	15.6434	0.0006	0.0038	38.8764	0.0166	0.0427
国家地质测试中心	18.6613	0.0041	0.0220	15.6351	0.0029	0.0185	38.8234	0.0067	0.0173
河北地质大学	18.6776	0.0060	0.0321	15.6324	0.0015	0.0096	38.8425	0.0163	0.0420
桂林理工大学	18.6664	0.0016	0.0086	15.6368	0.0027	0.0173	38.8340	0.0108	0.0278
南京大学	18.6770	0.0003	0.0016	15.6444	0.0004	0.0026	38.8616	0.0024	0.0062
平均值	18.6718		15.6377		38.8433				

实验室间标准偏差	0.0007	0.0050	0.0219	
SD	0.0087	0.0050	0.0218	
实验室间相对标准	0.0467	0.0222	0.0562	
偏差 RSD (%)	0.0467	0.0323	0.0562	
重复性限 r	0.0146	0.0052	0.0312	
再现性限 R	0.0278	0.0149	0.0674	

6.4.1 正确度数据

6家验证单位分别对6种不同铅含量水平的土壤和沉积物样品,按照全程序每个样品平行测定6次,分别计算不同浓度样品的相对误差、平均相对误差和相对误差的标准偏差,具体数据如表14-18所示。

表 14 铅同位素准确度测试数据汇总(土壤样品 1)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		²⁰⁷ Pb	/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	
	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	10.0601	0.0010	15 6121	0.0225	20 5174	0.0257
化学研究所	18.8601	-0.0019	15.6131	0.0235	38.5174	0.0257
西北大学	18.8686	0.0430	15.6182	0.0566	38.5448	0.0970
国家地质测试中心	18.8542	-0.0333	15.6066	-0.0180	38.5082	0.0019
河北地质大学	18.8613	0.0043	15.6079	-0.0094	38.5007	-0.0178
桂林理工大学	18.8654	0.0260	15.6126	0.0205	38.5189	0.0296
南京大学	18.8668	0.0334	15.6166	0.0460	38.5338	0.0683
平均相对误差(%)	0.0119		0.0199		0.0341	
相对误差的标准偏差	0.0280		0.0204		0.0422	
(%)	0.0	400	0.0294		0.0423	

表 15 铅同位素准确度测试数据汇总 (土壤样品 3)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		207 Pb/ 204 Pb		²⁰⁸ Pb/ ²⁰⁴ Pb	
—————————————————————————————————————	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	21 2057	0.0279	15 0004	0.0270	29.0704	0.0401
化学研究所	21.2057	0.0378	15.8084	-0.0279	38.9704	-0.0491
西北大学	21.2609	0.2981	15.8270	0.0895	39.0365	0.1203
国家地质测试中心	21.2062	0.0399	15.8105	-0.0143	38.9740	-0.0399
河北地质大学	21.2053	0.0357	15.8109	-0.0121	38.9775	-0.0311
桂林理工大学	21.2063	0.0404	15.8197	0.0437	39.0046	0.0384
南京大学	21.2241	0.1243	15.8237	0.0691	39.0205	0.0792
平均相对误差(%)	0.0960		0.0247		0.0196	
相对误差的标准偏差	Λ 1	048	0.0493		0.0705	
(%)	0.1	U 1 0				

表 16 铅同位素准确度测试数据汇总(土壤样品 4)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		²⁰⁷ Pb/ ²⁰⁴ Pb		²⁰⁸ Pb/ ²⁰⁴ Pb	
—————————————————————————————————————	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	10 7271	0.0250	15 7200	0.0047	20.0600	0.0097
化学研究所	18.7371	0.0350	15.7388	-0.0047	39.0690	0.0087
西北大学	18.7416	0.0591	15.7480	0.0541	39.1038	0.0977
国家地质测试中心	18.7328	0.0121	15.7351	-0.0279	39.0624	-0.0081
河北地质大学	18.7328	0.0125	15.7353	-0.0265	39.0531	-0.0320
桂林理工大学	18.7376	0.0379	15.7412	0.0110	39.0751	0.0242
南京大学	18.7377	0.0386	15.7489	0.0594	39.0970	0.0805
平均相对误差(%)	0.0325		0.0109		0.0285	
相对误差的标准偏差	0.0179		0.0294		0.0509	
(%)	0.0	1 / 9	0.0384		0.0508	

表 17 铅同位素准确度测试数据汇总 (沉积物样品)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		²⁰⁷ Pb	/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	
一	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	18.5989	0.0193	15.6515	-0.0126	38.7414	0.0119
化学研究所	10.3909	0.0193	13.0313	-0.0120	36./414	0.0119
西北大学	18.6172	0.1176	15.6606	0.0456	38.7752	0.0991
国家地质测试中心	18.6088	0.0726	15.6557	0.0140	38.7453	0.0220
河北地质大学	18.6092	0.0745	18.6092	-0.0028	38.7437	0.0178
桂林理工大学	18.6061	0.0582	15.6529	-0.0037	38.7352	-0.0041
南京大学	18.5786	-0.0899	15.6621	0.0546	38.7394	0.0068
平均相对误差(%)	0.0421		0.0159		0.0256	
相对误差的标准偏差	0.0719		0.0290		0.0271	
(%)	0.0	/ 1 7	0.0280		0.0371	

表 18 铅同位素准确度测试数据汇总 (土壤样品 2)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		²⁰⁷ Pb	/ ²⁰⁴ Pb	²⁰⁸ Pb/ ²⁰⁴ Pb	
海 怔 中 位	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	10 (001	0.0450	15 (200	0.0421	20.7221	0.0200
化学研究所	18.6901	0.0450	15.6309	-0.0421	38.7231	-0.0208
西北大学	18.6915	0.0522	15.6443	0.0434	38.7685	0.0963
国家地质测试中心	18.6868	0.0273	15.6404	0.0186	38.7306	-0.0015
河北地质大学	18.6894	0.0412	15.6332	-0.0273	38.7255	-0.0148
桂林理工大学	18.6942	0.0666	15.6380	0.0033	38.7386	0.0192
南京大学	18.6972	0.0830	15.6464	0.0566	38.7681	0.0951
平均相对误差(%)	0.0526		0.0088		0.0289	
相对误差的标准偏差	0.0	107	0.0	207	0.0	525
(%)	0.0	197	0.0387		0.0535	

表 19 铅同位素准确度测试数据汇总 (土壤样品 5)

验证单位	²⁰⁶ Pb/ ²⁰⁴ Pb		207 Pb/ 204 Pb		²⁰⁸ Pb/ ²⁰⁴ Pb	
<u> </u>	平均值	相对误差	平均值	相对误差	平均值	相对误差
中国科学院广州地球	10 (024	0.0010	15 (211	0.0217	20.05(0	0.0940
化学研究所	18.6834	0.0818	15.6311	-0.0217	38.8568	0.0849
西北大学	18.7072	0.2095	15.6468	0.0789	38.8742	0.1299
国家地质测试中心	18.6595	-0.0462	15.6328	-0.0108	38.8219	-0.0049
河北地质大学	18.6747	0.0355	15.6322	-0.0150	38.8415	0.0455
桂林理工大学	18.6705	0.0129	15.6360	0.0094	38.8311	0.0188
南京大学	18.6796	0.0618	15.6442	0.0623	38.8579	0.0878
平均相对误差(%)	0.0592		0.0172		0.0603	
相对误差的标准偏差	0.0859		0.0420		0.0400	
(%)	0.0	039	0.0430		0.0498	

参考文献

- Baker, J., Peate, D., Waight, T., and Meysen, C., 2004. Pb isotopic analysis of standards and samples using a ²⁰⁷Pb-²⁰⁴Pb double spike and thallium to correct for mass bias with a double focusing MC-ICP-MS, Chem. Geol., 211, 275-303.
- Catanzaro, E.J., Murphy, T.J., Shields, W.R., and Garner, E.L., 1968. Absolute isotopic abundance ratios of common, equal-atom, and radiogenic lead isotopic standards.

 Journal Resources of the National Bureau of Standards, 72A, 261-267
- Deniel, C., Pin, C., 2001. Single-stage method for the simultaneous isolation of lead and strontium from silicate samples for isotopic measurements. Anal Chim Acta, 426, 95-103.
- Gale, N.H., 1996. A new method for extracting and purifying lead from difficult matrices for isotopic analysis. Anal Chim Acta, 332, 15-21.
- Hirata, T., 1996. Lead isotopic analysis of NIST standard refer ence materials using multiple collector-inductively coupled plasma mass spectrometry coupled with modified external correction method for mass discrimination effect. The Analyst, 121, 1407-1411.
- Horwitz, E. P., Dietz, M. L., Rhoads, S., Felinto, C., Gale, N. H., & Houghton, J., 1994. A lead-selective extraction chromatographic resin and its application to the isolation of lead from geological samples. Analytica Chimica Acta, 292, 263-273.
- Kamenov, G., Mueller, P., Perfit, M., 2004. Optimization of mixed Pb–Tl solutions for high precision isotopic analyses by MC-ICP-MS. Journal of Analytical Atomic Spectrometry, 19, 1262-1267.
- Kuritani, T., Nakamura, E., 2002. Precise isotope analysis of nanogram-level Pb for natural rock samples without use of double spikes. Chem Geol, 186, 31-43.
- Rehkamper, M., Halliday, A.M., 1998. Accuracy and long-term reproducibility of lead isotopic measurements by MC-ICP-MS using an external method for correction of mass discrimination. Int. J. Mass Spectrom. Ion Processes 58, 123-133.
- Rehkamper, M., Mezger, K., 2000. Investigation of matrix effects for Pb isotope ratio measurements by multiple collector ICP MS: verification and application of optimized analytical proto cols. J. Anal. At. Spectrom. 15, 1451-1460.
- Tanimizu, M., Ishikawa, T., 2006. Development of rapid and precise Pb isotope analytical techniques using MC-ICP-MS and new results for GSJ rock reference samples. Geochem J, 40, 121-133.

- Taylor, R.N., Ishizuka, O., Michalik, A., Milton, J. A., & Croudace, I.W., 2015. Evaluating the precision of Pb isotope measurement by mass spectrometry. J. Anal. At. Spectrom 30, 198-213.
- Thirlwall, M.F., 2002. Multicollector ICP-MS analysis of Pb isotopes using a ²⁰⁷Pb-²⁰⁴Pb double spike demonstrates up to 400 ppm/amu systematic errors in Tl-normalization. Chemical Geology, 184: 255-279.
- Todt, W., Cliff, R.A., Hanser, A., Hofmann, A.W., 1996. Evaluation of a ²⁰²Pb-²⁰⁵Pb double spike for high-precision lead isotope analysis. In: Hart, S.R., Basu, A. (Eds.), Earth Processes: Read ing the Isotope Code, vol. 95, pp. 429-437.
- Weis, D., Kieffer, B., Maerschalk, C., Barling, J., Jong, J.D., Williams, G.A., Hanano, D., Pretorius, W., Mattielli, N., Scoates, J.S., Goolaerts, A., Friedman, R.M., Mahoney, J.B., 2006. High-precision isotopic characterization of USGS reference materials by TIMS and MC-ICP-MS. Geochem Geophys Geosyst, 7, 139-149.
- White, W.M., Albarede, F., Telouk, P., 2000. High-precision analysis of Pb isotope ratios by multi-collector ICP-MS. Chem. Geol.167, 257-270.
- Woodhead, J.D., Hergt, J.M., 2007. Pb isotope analysis of USGS reference materials. Geostand Newslett, 24, 33-38.
- Woodhead, J., 2002. A simple method for obtaining highly accurate Pb isotope data by MC-ICP-MS. J Anal At Spectrom, 17, 1381-1385.
- Wu, G.L., Zhu, J.M., Tan, D., Han, G.L., Zhang, L.X., Ren, K., 2017. Accurate and precise determination of lead isotope composition in selected geochemical reference materials. Acta Geochim, 36: 421-425.
- 李潮峰,李献华,郭敬辉,李向辉,李怀坤,周红英,李国占,2011. 微量岩石样品中 Rb-Sr 和 Pb 一步分离及高精度热电离质谱测试. 地球化学,40,399-406.
- 刘芳. 钙同位素分析方法及其地质应用—以腾冲火山岩和粤北碳酸盐风化壳为例. 中国科学院广州地球化学研究所,2018.

附件-6 家验证单位报告

- 一、西北大学
- 二、桂林理工大学
- 三、南京大学
- 四、国家地质实验测试中心
- 五、河北地质大学
- 六、中国科学院广州地球化学研究所

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项目名 移	R: 土壤和沉积物中铅同位素测定的方法验证
委托方(甲フ	方):广东省生态环境监测中心
受托方(乙)	方) :

1. 实验室基本情况

大陆动力学国家重点实验室(西北大学)以"面向前沿、追求卓越、促进交叉、引领发展"为宗旨,拥有一批先进的大型仪器设备,围绕当今地球科学最前沿的大陆构造与动力学核心科学问题进行重点建设,建成了以矿物微区分析、构造过程中元素和同位素迁移规律、构造事件多元同位素定年为特色的研究和测试平台,分析测试水平已与国际接轨。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作年限
宗春蕾	女	40 岁	工程师	地球化学	18年
包志安	男	36 岁	高级工程师	地球化学	11 年

表 2 使用仪器情况登记表

仪器名称	规格型号	仪器出厂编号	性能状况(计量/校准状态、 量程、灵敏度等)
电热板	EG20B	220219G14016	40-200°C
烘箱	CS101-3EB	98064000	350°C
离心机	M16	22210018060011	500-16000rpm,精度
内心机。	WHO	22210018000011	≤50rpm
多接收器电感耦合等离			
子体质谱仪	Nu plasma II	na II Np210	
(MC-ICP-MS)			
分析天平	AX105	1125253889	0.01mg—31g

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法
盐酸	Merck 公司、optimal 级别	/
硝酸	Merck 公司、optimal 级别	/
氢氟酸	Fisher Scientific 公司、optimal 级别	/
饱和溴水	福晨(天津)化学试剂有限公司、分析 纯	/
二氧化硫标准气体	陕西沁蓝化工科技有限公司	/
Milli-Q H ₂ O	Millipore	MILLI-Q IQ7000

2. 实验样品

土壤样品 1, 沉积物样品, 土壤样品 2, 土壤样品 3, 土壤样品 4 和土壤样品 5。

3. 方法原理

称适量的土壤或沉积物样品粉末在 PFA 材质的溶样杯中,利用浓 HNO₃、浓 HF、浓 HCl 和 H₂O₂等溶解样品;将样品转为 HBr 体系,用 0.5 mL 0.6 N HBr 溶解样品后离心。取含 Pb 上清液进行化学分离后,将得到的 Pb 溶液转为硝酸体系,溶解在 2% HNO₃溶液介质中。按 Pb/Tl 含量比值为 10:1 的比例加入 Tl 溶液后在 MC-ICP-MS 测试。

4. 试剂和材料

4.1 试剂

实验用的浓 HCl 和浓 HNO₃ 从 Merck 公司购买,浓 HF 和过氧化氢(H_2O_2)从 Fisher Scientific 公司购买,均为 optimal 级别。 浓氢溴酸使用优级纯试剂经 analab 酸纯化器蒸馏三次制得。Milli-Q H₂O 采用 MillQ(Millipore,Bedford,MA,USA)装置纯化,电阻率 18.2M Ω ·cm;酚酞试剂;Pb 同位素国际标准溶液(NIST SRM 981Pb)和国际 Tl 标准溶液(NIST SRM 997Tl)均生产自 Spex certiprep 公司。新开封的 AG 1-X8(200-400 mesh,Bio-Rad)离子交换树脂在使用前先用 4 N HNO₃ 充分摇匀并浸泡 8h,沉淀后倒出上清液,加入适量的 Milli-Q H₂O,再次充分摇匀并浸泡 4h,沉淀后倒出上清液,如此反复用 4 N HNO₃ 和 Milli-Q H₂O 交替清洗 3 次,最终将树脂保存在 1N HCl 溶液中。

5. 主要仪器和设备

电热板,离心机,Neptune MC-ICP-MS,电子天平,百级超净实验台。

6. 分析步骤

6.1 样品溶解

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯(PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140℃下加热反应 10—12 小时。加热结束后,开盖,110℃在电热板上蒸干,再依次 加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL

0.6 M HBr 溶液溶解, 静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟 (等待上样)。

6.2 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L HBr 溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110℃加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO₃溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

6.3 Pb 同位素的测试以及仪器质量分馏校正

6.3.1 测试仪器参数和仪器稳定性

样品的 Pb 同位素比值测试在多接收电感耦合等离子体质谱仪(Neptune MC-ICP-MS)进行。Neptune MC-ICP-MS 配有 9 个法拉第电磁接收杯,测试样品 Pb 同位素过程中仪器参数详见表 1。测试时每个样品均采集 50 个数据点,设置每个数据点的积分时间为 3s。样品和标准溶液的介质均使用 2%的硝酸溶液。

表 4 Pb 同位素测试时的 MC-ICP-MS 仪器参数设置

仪器参数	设定条件
低真空(Fore Vacuum)	1.5e-003 mbar
高真空(High Vacuum)	2.08e-007 mbar
离子吸气压力(Ion Getter Press)	1.74e-008 mbar
高压(High voltage)	-10000.00 V
氫中(Argon Max)	6.06 bar
冷却气体(Cool Gas)	15.00 L/min
运行功率(Running power)	1230 W

仪器参数	设定条件
载气(Aux Gas)	0.8 L/min
进样速率(Sample Gas)	1.06 L/min
进样液体中 Pb 浓度(Pb concentration in the solution	0.2 //
introduction)	0.3 mg/L

在 Neptune MC-ICP-MS 测试样品 Pb 同位素过程中,间插测试国际铅标准样品 NIST SRM 981 溶液,以监控质谱仪测试过程的稳定性。根据对 NIST SRM 981 标准 溶液的重复测定(n=13)得到结果为: 206 Pb/ 204 Pb=16.9405±0.0002(2SE)、 207 Pb/ 204 Pb=15.4963±0.0002(2SE)和 208 Pb/ 204 Pb=36.7219±0.0005(2SE),与推荐的参考值 16.937±0.011(2SE)(206 Pb/ 204 Pb)、15.4910±0.015(2SE)(207 Pb/ 204 Pb) 和 36.721±0.036(2SE)(208 Pb/ 204 Pb) 基本一致(Catanzaro et al., 1968)。

6.3.2 质量歧视校正

Pb 同位素组成测试过程潜在的仪器质量分馏采用元素外标法校正,就是往待测Pb 溶液加入 Tl 标样。这个方法是假设外标元素与目标元素在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素的分馏因子来校正仪器测试 Pb 同位素过程中的分馏,具体的计算公式如下(White et al., 2000):

$$\left(\frac{^{208}Pb}{^{206}Pb}\right)_{t} = \left(\frac{^{208}Pb}{^{206}Pb}\right)_{m} \left(\frac{M(Pb)_{208}}{M(Pb)_{206}}\right)^{f} (1)$$

$$\left(\frac{^{205}Tl}{^{203}Tl}\right)_{t} = \left(\frac{^{205}Tl}{^{203}Tl}\right)_{m} \left(\frac{M(Tl)_{205}}{M(Tl)_{203}}\right)^{f} (2)$$

式中:设 f 为分馏系数,假设 Pb 与 Tl 在仪器测试过程潜在同位素的分馏系数一致 (Walder and Furuta, 1993; Belshaw et al., 1998; Rehkämper and Mezger, 2000); t 和 m 分别代表为样品的真实值和测定值。根据加入已知 Tl 同位素比值的 Tl 标准溶液,由公式 (2),可以求出 Tl 和 Pb 测试过程的仪器分馏系数 f。把求出的分馏系数 f 代入公式 (1)即可校正并获得样品真实的 Pb 同位素比值。

7. 实验结果

针对土壤样品 1、沉积物样品、土壤样品 2、土壤样品 3、土壤样品 4 和土壤样品 5 的 Pb 同位素进行 6 次重复样分析结果如下表 5 和表 6 所示:

7.1 方法精密度测试数据

表 5 方法精密度测试数据

				试材	 羊品		
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		1	品	2	3	4	5
	1	18.8491	18.6114	18.6683	21.2167	18.7417	18.6834
	2	18.8683	18.6007	18.7030	21.2102	18.7407	18.6967
平行测定结果	3	18.8668	18.6208	18.6886	21.2178	18.7409	18.6765
$(^{206}\text{Pb}/^{204}\text{Pb})$	4	18.8694	18.6200	18.6974	21.2192	18.7459	18.6801
	5	18.8679	18.6244	18.6874	21.2155	18.7418	18.6841
	6	18.8634	18.5949	18.6978	21.2196	18.7410	18.6800
平均值	•	18.8642	18.6120	18.6904	21.2165	18.7420	18.6835
标准偏差		0.0077	0.0120	0.0124	0.0034	0.0020	0.0070
相对标准偏差(%)		0.0406	0.0643	0.0661	0.0162	0.0105	0.0377
	1	15.6136	15.6638	15.6418	15.8217	15.7488	15.6436
	2	15.6145	15.6592	15.6429	15.8216	15.7494	15.6437
平行测定结果	3	15.6146	15.6563	15.6417	15.8223	15.7489	15.6425
$(^{207}\text{Pb}/^{204}\text{Pb})$	4	15.6146	15.6556	15.6421	15.8221	15.7493	15.6436
	5	15.6144	15.6541	15.6417	15.8223	15.7494	15.6431
	6	15.6146	15.6597	15.6424	15.8224	15.7486	15.6441
平均值		15.6144	15.6581	15.6421	15.8221	15.7491	15.6434
标准偏差		0.0004	0.0035	0.0005	0.0003	0.0003	0.0006
相对标准偏差	(%)	0.0025	0.0224	0.0031	0.0021	0.0022	0.0036
	1	38.5210	38.7842	38.7489	39.0263	39.1096	38.8651
	2	38.5387	38.7667	38.7726	39.0225	39.1062	38.9040
平行测定结果	3	38.5377	38.7693	38.7582	39.0298	39.1081	38.8632
$(^{208}\text{Pb}/^{204}\text{Pb})$	4	38.5399	38.7643	38.7686	39.0255	39.1084	38.8675
	5	38.5375	38.7686	38.7593	39.0288	39.1093	38.8896
	6	38.5349	38.7685	38.7697	39.0273	39.1065	38.8691
				•		-	

	试样品							
平行号	土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品		
	1	品	2	3	4	5		
平均值	38.5350	38.7703	38.7629	39.0267	39.1080	38.8764		
标准偏差	0.0070	0.0071	0.0090	0.0026	0.0014	0.0166		
相对标准偏差(%)	0.0182	0.0182	0.0232	0.0066	0.0036	0.0426		

7.2 方法准确度测试数据

表 6 方法准确度测试数据

				试材	 样品		
平行号		土壌样	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		品 1	品	2	3	4	5
	1	18.8677	18.6133	18.6998	21.2600	18.7425	18.7069
	2	18.8682	18.6242	18.7005	21.2599	18.7420	18.7066
平行测定结果	3	18.8692	18.6189	18.6902	21.2609	18.7409	18.7074
(²⁰⁶ Pb/ ²⁰⁴ Pb)	4	18.8731	18.6209	18.6913	21.2595	18.7413	18.7105
	5	18.8701	18.6220	18.7014	21.2617	18.7404	18.7075
	6	18.8634	18.6037	18.6655	21.2634	18.7423	18.7044
平均值		18.8686	18.6172	18.6915	21.2609	18.7416	18.7072
有证标准物质推	注荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681
相对误差(%	6)	0.0430	0.1176	0.0522	0.2981	0.0591	0.2095
	1	15.6177	15.6599	15.6440	15.8266	15.7485	15.6469
	2	15.6179	15.6596	15.6450	15.8266	15.7481	15.6463
平行测定结果	3	15.6180	15.6603	15.6452	15.8280	15.7473	15.6462
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6173	15.6612	15.6453	15.8274	15.7477	15.6490
	5	15.6178	15.6629	15.6438	15.8257	15.7482	15.6456
	6	15.6207	15.6599	15.6424	15.8274	15.7483	15.6470
平均值 有证标准物质推荐值 相对误差(%)		15.6182	15.6606	15.6443	15.8270	15.7480	15.6468
		15.6094	15.6535	15.6375	15.8128	15.7395	15.6345
		0.0566	0.0456	0.0434	0.0895	0.0541	0.0789
平行测定结果	1	38.5461	38.7719	38.7739	39.0377	39.1054	38.8737
(208Pb/204Pb)	2	38.5451	38.7745	38.7755	39.0350	39.1029	38.8723

		试样品					
平行号		土壌样	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		品 1	品	2	3	4	5
3		38.5460	38.7767	38.7681	39.0390	39.1020	38.8762
	4	38.5446	38.7795	38.7703	39.0370	39.1030	38.8801
5		38.5450	38.7851	38.7735	39.0324	39.1038	38.8729
		38.5422	38.7635	38.7498	39.0379	39.1054	38.8701
平均值 有证标准物质推荐值 相对误差(%)		38.5448	38.7752	38.7685	39.0365	39.1038	38.8742
		38.5075	38.7368	38.7312	38.9896	39.0656	38.8238
		0.0970	0.0991	0.0963	0.1203	0.0977	0.1299

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项	目	名	称: 土均	襄和沉积物中铅同位素测定的方法验证_
委	托方	(甲方):	广东省生态环境监测中心
受	托方	(乙方):	桂林理工大学

1.实验室基本情况

广西隐伏金属矿产勘查重点实验室依托桂林理工大学,于 2007 年获批区级重点实验室。实验室以国家对有色及贵金属资源战略需求为目标,依托学科包括 1 个广西优势特色重点学科(地质资源与地质工程),4 个广西重点学科(矿产普查与勘探、地球探测与信息技术、地质工程和地球化学),1 个一级学科博士学位授权点,1 个"地质资源与地质工程""博士后科研流动站,2 个一级学科硕士学位授权点和 1 个工程硕士授权领域。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作 年限
余红霞	37	女	实验师	地球化学	9年

表 2 使用仪器情况登记表

仪器名称	规格型号	仪器出厂编号	性能状况(计量/校准状态、量程、灵敏度等)
多接收电感耦合	Neptune Plus	SN01204 N	系统稳定性<50ppm/h,丰度灵
等离子体质谱仪	reptune i ius	5110120411	敏度<0.5ppm
Milli-Q 超纯水机	Advantage A10	/	电阻率 18.2 MΩ
蒸酸器	CleanAcids 3—500ml		功率 2000W, 电源 230V 9Amp
电热板	DBF-1,400×300mm	/	功率 2KW,电源 220V 50Hz
离心机	MC 12mlya	/	功率 45w,转速
おいかに	MC-12plus	/	500~12000rpm±5%
工 亚	BSA124S-CW	3137815764	Max=220g, Min=10mg,
天平	D3A1243-CW	313/013/04	d=0.1mg, e=1mg

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法
NIST SRM981PB	Spex certiprep	无
GSB Tl	国家有色金属及电子材料分析测试中心	无
H_2O_2	Fisher Scientific optimal	无
SiO ₂ 标准气体	大连大特气体有限公司,99.9%	无
浓 HCl	上海傲班科技有限公司、37% G4	无
浓 HNO ₃	上海傲班科技有限公司、69% G4	无
浓 HF	上海傲班科技有限公司、49% G4	无
浓 HCl	上海傲班科技有限公司、37% G3	无
浓 HNO3	上海傲班科技有限公司、69% G3	无
浓 HF	上海傲班科技有限公司、49% G3	无
浓 HCl	国药集团化学试剂有限公司、37% 优级纯	二次纯化

名称	生产厂家、规格	纯化处理方法
浓 HNO3	国药集团化学试剂有限公司、69% 优级纯	二次纯化
浓 HF	国药集团化学试剂有限公司、49% 优级纯	二次纯化

2.实验对象

土壤样品 1、土壤样品 2、土壤样品 3、土壤样品 4、土壤样品 5 和沉积物样品。

3.方法原理

称适量的土壤或沉积物样品粉末在 PFA 材质的溶样杯中,利用浓 HNO₃、浓 HF、浓 HCl 和 H₂O₂等溶解样品;将样品转为 HBr 体系,用 0.5 mL 0.6 N HBr 溶解样品后 离心。取含 Pb 上清液进行化学分离后,将得到的 Pb 溶液转为硝酸体系,溶解在 2% HNO₃ 溶液介质中。按 Pb/Tl 含量比值为 10:1 的比例加入 Tl 溶液后在 MC-ICP-MS 测试。按 Pb/Tl 含量比值为 10:1 的比例加入 Tl 溶液后在 MC-ICP-MS 测试。按 Pb/Tl 含量比值为 10:1 的比例加入 Tl 溶液后在 MC-ICP-MS 测试 Pb 同位素。

4 试剂和材料

4.1 试剂

实验试剂的配制以及整个化学前处理的全过程是在桂林理工大学隐伏矿产重点实验室的超净实验室完成,该实验室为百级超净实验室。在整个实验流程中所用的硝酸、盐酸、氢氟酸、氢溴酸均为国药集团化学试剂有限公司的优级纯试剂,使用前盐酸、硝酸、氢溴酸、氢氟酸均经 2 次纯化,并且根据实验室流程中所需要的酸浓度进行稀释配置。Milli-Q H_2O 采用 MillQ (Millipore,Bedford,MA,USA) 装置纯化,电阻率 $18.2~M\Omega$; 双氧水 (H_2O_2) 从 Fisher Scientific 公司购买,为 optimal 级别。Pb 同位素国际标准溶液(NIST SRM 981Pb)产自 Spex certiprep 公司和国际 Tl标准溶液生产自 Inorganic Ventures 公司。AG 1-X8 (200-400 mesh,Bio-Rad)离子交换树脂。

5.主要仪器和设备

电热板、离心机、电子天平、百级超净实验室和 Neptune Plus MC-ICP-MS 等。

6.分析步骤

6.1 样品溶解

根据土壤和沉积物中铅的含量, 称取待测含 Pb 样品 25-350 mg 于溶样杯 (PFA

材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140℃下加热反应 10—12 小时。加热结束后,开盖,110℃在电热板上蒸干,再依次 加入 2.4 mL 高纯盐酸和 0.8 ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热 反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1 mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟(等待上样)。

6.2 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110℃加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO₃溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

7.3 Pb 同位素的测试以及仪器质量分馏校正

7.3.1 测试仪器参数和仪器稳定性

表 4 Pb 同位素测试时的 MC-ICP-MS 仪器参数设置

仪器参数	设定条件
低真空(Fore Vacuum)	1.27e-003 mbar
高真空(High Vacuum)	7.23e-008 mbar
离子吸气压力(Ion Getter Press)	5.84e-008 mbar
高压(High voltage)	-10000.00 V
冷却气体(Cool Gas)	16.00 L/min
运行功率(Running power)	1148 W
载气(Aux Gas)	0.82 L/min
进样速率(Sample Gas)	1.09 L/min
杯结构	L3(²⁰² Hg), L2(²⁰³ Tl), L1(²⁰⁴ Pb), C(²⁰⁵ Tl),

样品的 Pb 同位素比值测试在多接收电感耦合等离子体质谱仪(Neptune Plus MC-ICP-MS)进行。Neptune Plus MC-ICP-MS 配有 9 个法拉第电磁接收杯,测试样品 Pb 同位素过程中仪器参数详见表 1。测试时每个样品均采集 50 组数据点,设置每个数据点的积分时间为 4.194s。为了减少 Pb 同位素测试时产生偏差,样品和标准溶液的浓度相对偏差控制范围为±20%以内。样品和标准溶液的介质均使用 2%的硝酸溶液。

在 Neptune Plus MC-ICP-MS 测试样品 Pb 同位素过程中,间插测试国际铅标准样品 NIST 981 溶液,以监控质谱仪测试过程的稳定性。本实验室对 NIST 981 标准溶液 的长期监控(n=65)的结果为: ²⁰⁶Pb/²⁰⁴Pb=16.9315±0.0026(2SD)、 ²⁰⁷Pb/²⁰⁴Pb=15.4839±0.0021(2SD)和 ²⁰⁸Pb/²⁰⁴Pb=36.6740±0.0053(2SD),与推荐的参考值 16.937(²⁰⁶Pb/²⁰⁴Pb)、15.4910(²⁰⁷Pb/²⁰⁴Pb)和 36.721(²⁰⁸Pb/²⁰⁴Pb)在误差范围内基本一致(Catanzaro et al., 1968)。

7.3.2 质量歧视校正

Pb 同位素组成测试过程潜在的仪器质量分馏采用元素外标法校正,就是往待测Pb 溶液加入Tl 标样。这个方法是假设外标元素与目标元素在仪器测试过程的同位素分馏因子一致,利用已知Tl 同位素的分馏因子来校正仪器测试Pb 同位素过程中的分馏,具体的计算公式如下(White et al., 2000):

$$\left(\frac{^{208}Pb}{^{206}Pb}\right)_{t} = \left(\frac{^{208}Pb}{^{206}Pb}\right)_{m} \left(\frac{M(Pb)_{208}}{M(Pb)_{206}}\right)^{f} (1)$$

$$\left(\frac{^{205}Tl}{^{203}Tl}\right)_{t} = \left(\frac{^{205}Tl}{^{203}Tl}\right)_{m} \left(\frac{M(Tl)_{205}}{M(Tl)_{203}}\right)^{f} (2)$$

式中:设 f 为分馏系数,假设 Pb 与 Tl 在仪器测试过程潜在同位素的分馏系数一致 (Walder and Furuta, 1993; Belshaw et al., 1998; Rehkämper and Mezger, 2000); t 和 m 分别代表为样品的真实值和测定值。根据加入已知 Tl 同位素比值的 Tl 标准溶液,由公式 (2),可以求出 Tl 和 Pb 测试过程的仪器分馏系数 f。把求出的分馏系数 f 代入公式 (1)即可校正并获得样品真实的 Pb 同位素比值。

8.实验结果

土壤样品 1、土壤样品 3、土壤样品 4、沉积物样品和土壤样品 2 的分析结果见 表 5 和表 6。

8.1 方法精密度测试数据

表 5 方法精密度测试数据

				试样	品		
平行号		土壤样品	沉积物样	土壤样品	土壤样	土壤样品	土壤样品
		1	品	2	品 3	4	5
	1	18.8618	18.6085	18.6767	21.1749	18.7311	18.6656
	2	18.8604	18.6027	18.6763	21.1752	18.7299	18.6687
平行测定结果	3	18.8620	18.6031	18.6752	21.1721	18.7310	18.6665
$(^{206}\text{Pb}/^{204}\text{Pb})$	4	18.8602	18.6062	18.6755	21.1777	18.7326	18.6677
	5	18.8590	18.6060	18.6771	21.1874	18.7307	18.6653
	6	18.8604	18.6034	18.6727	21.1944	18.7308	18.6644
平均值		18.8606	18.6050	18.6756	21.1803	18.7310	18.6664
标准偏差		0.0011	0.0023	0.0016	0.0087	0.0009	0.0016
相对标准偏差((%)	0.0059	0.0123	0.0085	0.0411	0.0047	0.0086
	1	15.6109	15.6575	15.6403	15.8147	15.7437	15.6396
	2	15.6094	15.6532	15.6404	15.8140	15.7431	15.6394
平行测定结果	3	15.6143	15.6522	15.6396	15.8144	15.7434	15.6386
$(^{207}\text{Pb}/^{204}\text{Pb})$	4	15.6111	15.6535	15.6383	15.8157	15.7440	15.6357
	5	15.6102	15.6529	15.6394	15.8124	15.7416	15.6339
	6	15.6094	15.6535	15.6374	15.8141	15.7423	15.6337
平均值	•	15.6109	15.6538	15.6392	15.8142	15.7430	15.6368
标准偏差		0.0018	0.0019	0.0012	0.0011	0.0009	0.0027
相对标准偏差((%)	0.0117	0.0120	0.0075	0.0068	0.0058	0.0174
	1	38.5155	38.7537	38.7373	38.9903	39.0775	38.8439
	2	38.5075	38.7447	38.7372	38.9887	39.0778	38.8459
平行测定结果	3	38.5246	38.7427	38.7351	38.9891	39.0790	38.8410
$(^{208}\text{Pb}/^{204}\text{Pb})$	4	38.5156	38.7462	38.7311	38.9948	39.0737	38.8279
	5	38.5099	38.7447	38.7346	38.9959	39.0703	38.8230
	6	38.5075	38.7438	38.7274	39.0009	39.0767	38.8224
平均值		38.5134	38.7460	38.7338	38.9933	39.0758	38.8340
标准偏差		0.0066	0.0040	0.0039	0.0048	0.0032	0.0108
相对标准偏差((%)	0.0171	0.0102	0.0100	0.0123	0.0083	0.0278

8.2 方法准确度测试数据

表 6 方法准确度测试数据

				试材	羊品		
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		1	品	2	3	4	5
	1	18.8657	18.6060	18.6921	21.2080	18.7392	18.6714
	2	18.8654	18.6056	18.6896	21.2073	18.7381	18.6681
平行测定结果	3	18.8677	18.6051	18.6932	21.2009	18.7363	18.6726
(²⁰⁶ Pb/ ²⁰⁴ Pb)	4	18.8660	18.6049	18.6958	21.2116	18.7383	18.6703
	5	18.8671	18.6071	18.6963	21.2030	18.7382	18.6724
	6	18.8605	18.6080	18.6979	21.2068	18.7355	18.6682
平均值		18.8654	18.6061	18.6942	21.2063	18.7376	18.6705
有证标准物质推	荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681
相对误差(%	,)	0.0260	0.0582	0.0666	0.0404	0.0379	0.0129
	1	15.6115	15.6520	15.6360	15.8202	15.7423	15.6377
	2	15.6116	15.6524	15.6339	15.8203	15.7421	15.6332
平行测定结果	3	15.6133	15.6525	15.6368	15.8197	15.7406	15.6385
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6116	15.6520	15.6396	15.8190	15.7412	15.6350
	5	15.6131	15.6538	15.6399	15.8187	15.7420	15.6380
	6	15.6145	15.6548	15.6419	15.8204	15.7392	15.6334
平均值		15.6126	15.6529	15.6380	15.8197	15.7412	15.6360
有证标准物质推	荐值	15.6094	15.6535	15.6375	15.8128	15.7395	15.6345
相对误差(%	,)	0.0205	-0.0037	0.0033	0.0437	0.0110	0.0094
	1	38.5179	38.7327	38.7266	39.0053	39.0776	38.8403
	2	38.5152	38.7325	38.7231	39.0065	39.0758	38.8205
平行测定结果	3	38.5222	38.7334	38.7327	39.0053	39.0736	38.8418
(²⁰⁸ Pb/ ²⁰⁴ Pb)	4	38.5175	38.7345	38.7470	39.0028	39.0762	38.8247
	5	38.5209	38.7376	38.7485	39.0013	39.0774	38.8396
	6	38.5198	38.7406	38.7539	39.0063	39.0698	38.8198
平均值		38.5189	38.7352	38.7386	39.0046	39.0751	38.8311
有证标准物质推	荐值	38.5075	38.7368	38.7312	38.9896	39.0656	38.8238
相对误差(%	,)	0.0296	-0.0041	0.0192	0.0384	0.0242	0.0188

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项	目	名	称: 土均	襄和沉积物中铅同位素测定的方法验证
委	托方	(甲方):	广东省生态环境监测中心
受	托方	(乙方):	南京大学

1.实验室基本情况

内生金属矿床成矿机制研究国家重点实验室(南京大学)现有建筑面积约 4000 平方米,拥有一批先进的仪器设备,总值达 11500 万元。历经近二十年的建设与开放运行,实验分析系统不断完善,建立和形成了以矿物结构与成分分析平台、元素与同位素分析平台、高温高压实验平台、成矿流体分析平台、古地磁与构造热年代学平台、生物一环境共演化及地学大数据和高性能计算平台等七大集群为主的实验室技术支撑平台,在微束分析、同位素分析、成矿流体分析等领域形成自己的技术特色。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作 年限
杨涛	男	42	副教授	地质学	15年

表 2 使用仪器情况登记表

小鬼友和	는 사 사 다	公鬼山厂始 县	性能状况(计量/校准
()	规格型号	仪器出厂编号	状态、量程、灵敏度等)
电热板	/	/	/
离心机	/	/	/
MC-ICP-MS	Neptune plus	/	/
电子天平	/	/	/

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法		
浓 HCl	优级纯试剂	经 Savillex DST 1000 亚沸蒸馏器蒸馏一次至		
浓 HNO ₃	1	两次制得		
浓 HF	优级纯试剂	经 Savillex DST 1000 亚沸蒸馏器两次亚沸蒸		
W III	光级绝 风刑	馏制得		
Milli-Q H ₂ O	/	采用 MillQ(Millipore,Bedford,MA,USA)		
Willin-Q 1120	1	装置纯化		
双氧水 (H ₂ O ₂)	Fisher Scientific,	,		
X 丰(八 (H2O2)	optimal 级别	,		
酚酞试剂	/	/		
AG 1-X8 离子交换树脂	200-400 mesh,	/		

名称	生产厂	家、规格	纯化处理方法
	Bio	o-Rad	

2.样品

分析样品六份,分别为:土壤样品 1、沉积物样品、土壤样品 2、土壤样品 3、土壤样品 4 和土壤样品 5。

3.分析步骤

3.1 样品溶解

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯(PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140℃下加热反应 10—12 小时。加热结束后,开盖,110℃在电热板上蒸干,再依次 加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟(等待上样)。

3.2 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110°C加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO3 溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

3.3 Pb 同位素的测试以及仪器质量分馏校正

3.3.1 测试仪器参数和仪器稳定性

样品的 Pb 同位素比值测试在多接收电感耦合等离子体质谱仪(Neptune Plus MC-ICP-MS)进行。Neptune Plus MC-ICP-MS 配有 9 个法拉第电磁接收杯,测试样品 Pb 同位素过程中仪器参数详见表 1。测试时每个样品均采集 60 个数据点,设置每个数据点的积分时间为 4.194 s。为了减少 Pb 同位素测试时产生偏差,样品和标准溶液的浓度相对偏差控制范围为±10%以内。样品和标准溶液的介质均使用 2%的硝酸溶液。

表 4 Pb 同位素测试时的 MC-ICP-MS 仪器参数设置

仪器参数	设定条件
低真空(Fore Vacuum)	2.31e-004 mbar
高真空(High Vacuum)	9.30e-008 mbar
离子吸气压力(Ion Getter Press)	6.05e-009 mbar
高压(High voltage)	-10000 V
氫中 (Argon Max)	6.02 bar
冷却气体(Cool Gas)	16.0 L/min
运行功率(Running power)	1200 W
载气(Aux Gas)	0.9 L/min
进样速率(Sample Gas)	1.0 L/min
进样液体中 Pb 浓度(Pb concentration in the solution introduction)	0.2 mg/L

在 Neptune MC-ICP-MS 测试样品 Pb 同位素过程中,间插测试国际铅标准样品 NIST 981 溶液,以监控质谱仪测试过程的稳定性。本实验室对 NIST 981 标准溶液的长期监控(n=89)的结果为: 206 Pb/ 204 Pb = 16.9400 ± 0.0003 (2SE)、 207 Pb/ 204 Pb = 15.4954 ± 0.0002 (2SE)和 208 Pb/ 204 Pb = 36.7097 ± 0.0006 (2SE),与推荐的参考值 16.937 ± 0.011 (2SE)(206 Pb/ 204 Pb)、 15.4910 ± 0.015 (2SE)(207 Pb/ 204 Pb)和 36.721 ± 0.036 (2SE)(208 Pb/ 204 Pb)(Catanzaro et al., 1968)在误差范围内基本一致。

3.3.2 质量歧视校正

Pb 同位素组成测试过程潜在的仪器质量分馏采用元素外标法校正,就是往待测Pb 溶液加入Tl 标样。这个方法是假设外标元素与目标元素在仪器测试过程的同位素分馏因子一致,利用已知Tl 同位素的分馏因子来校正仪器测试Pb 同位素过程中的

分馏,具体的计算公式如下 (White et al., 2000):

$$\left(\frac{^{208}Pb}{^{206}Pb}\right)_{t} = \left(\frac{^{208}Pb}{^{206}Pb}\right)_{m} \left(\frac{M(Pb)_{208}}{M(Pb)_{206}}\right)^{f} (1)$$

$$\left(\frac{^{205}Tl}{^{203}Tl}\right)_{t} = \left(\frac{^{205}Tl}{^{203}Tl}\right)_{m} \left(\frac{M(Tl)_{205}}{M(Tl)_{203}}\right)^{f} (2)$$

式中:设 f 为分馏系数,假设 Pb 与 Tl 在仪器测试过程潜在同位素的分馏系数一致(Walder and Furuta, 1993; Belshaw et al., 1998; Rehkämper and Mezger, 2000); t 和 m 分别代表为样品的真实值和测定值。根据加入已知 Tl 同位素比值的 Tl 标准溶液,由公式(2),可以求出 Tl 和 Pb 测试过程的仪器分馏系数 f。把求出的分馏系数 f 代入公式(1)即可校正并获得样品真实的 Pb 同位素比值。

4.测试结果

样品和标样的 Pb 同位素比值可以直接由仪器测得并校正得到。Pb 同位素比值保留至小数点第四位,按 ²⁰⁶Pb/²⁰⁴Pb±2SE、²⁰⁷Pb/²⁰⁴Pb±2SE、²⁰⁸Pb/²⁰⁴Pb±2SE 和 ²⁰⁷Pb/²⁰⁶Pb±2SE 表示。

共测试样品 52 个,其中流程空白 6 个,质控样品(标准样品 NIST 981) 10 个,试样 36 个。质控样品精度、准确度在误差范围内与推荐值一致。具体详情可见最后附件参考表 5、6。

4.1 方法精密度测试数据

表 5 方法精密度测试数据

			试样品								
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品				
		1	品	2	3	4	5				
	1	18.8679	18.6167	18.6948	21.2128	18.7339	18.6771				
	2	18.8680	18.6160	18.6944	21.2124	18.7347	18.6769				
平行测定结果	3	18.8679	18.6164	18.6944	21.2131	18.7350	18.6769				
(²⁰⁶ Pb/ ²⁰⁴ Pb)	4	18.8680	18.6172	18.6842	21.2141	18.7347	18.6767				
	5	18.8679	18.6163	18.6837	21.2128	18.7351	18.6775				
	6	18.8674	18.6165	18.6838	21.2136	18.7350	18.6766				
平均值		18.8678	18.6165	18.6892	21.2131	18.7347	18.6770				

			试样品								
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品				
		1	品	2	3	4	5				
标准偏差		0.0002	0.0004	0.0058	0.0006	0.0004	0.0003				
相对标准偏差(%)	0.0011	0.0022	0.0312	0.0030	0.0023	0.0018				
	1	15.6152	15.6589	15.6432	15.8252	15.7447	15.6445				
	2	15.6152	15.6583	15.6426	15.8249	15.7452	15.6444				
平行测定结果	3	15.6150	15.6586	15.6428	15.8255	15.7459	15.6443				
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6150	15.6595	15.6425	15.8263	15.7455	15.6442				
	5	15.6147	15.6587	15.6425	15.8254	15.7459	15.6451				
	6	15.6144	15.6588	15.6424	15.8259	15.7453	15.6439				
平均值		15.6149	15.6588	15.6427	15.8255	15.7454	15.6444				
标准偏差		0.0003	0.0004	0.0003	0.0005	0.0005	0.0004				
相对标准偏差(%)	0.0020	0.0024	0.0020	0.0034	0.0029	0.0024				
	1	38.5284	38.7653	38.7614	39.0259	39.0841	38.8628				
	2	38.5289	38.7650	38.7602	39.0250	39.0860	38.8612				
平行测定结果	3	38.5279	38.7655	38.7606	39.0266	39.0878	38.8612				
(²⁰⁸ Pb/ ²⁰⁴ Pb)	4	38.5272	38.7678	38.7521	39.0290	39.0867	38.8611				
	5	38.5271	38.7653	38.7514	39.0271	39.0876	38.8628				
	6	38.5267	38.7661	38.7510	39.0278	39.0865	38.8607				
平均值		38.5277	38.7658	38.7561	39.0269	39.0865	38.8616				
标准偏差		0.0008	0.0011	0.0051	0.0014	0.0013	0.0009				
相对标准偏差(%)	0.0022	0.0027	0.0132	0.0036	0.0034	0.0024				

4.2 方法准确度测试数据

表 6 方法准确度测试数据

		试样品								
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品			
		1	品	2	3	4	5			
	1	18.8664	18.5777	18.6985	21.2219	18.7382	18.6786			
平行测定结果	2	18.8665	18.5786	18.6969	21.2241	18.7383	18.6792			
(206Pb/204Pb)	3	18.8679	18.5804	18.6968	21.2241	18.7373	18.6787			
	4	18.8664	18.5772	18.6977	21.2244	18.7369	18.6800			

		试样品						
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品	
		1	品	2	3	4	5	
	5	18.8669	18.5795	18.6958	21.2247	18.7387	18.6802	
	6	18.8667	18.5781	18.6975	21.2251	18.7370	18.6811	
平均值		18.8668	18.5786	18.6972	21.2241	18.7377	18.6796	
有证标准物质推	荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681	
相对误差(%	5)	0.0334	-0.0899	0.0830	0.1243	0.0386	0.0618	
	1	15.6164	15.6618	15.6475	15.8238	15.7487	15.6441	
	2	15.6162	15.6620	15.6462	15.8238	15.7493	15.6440	
平行测定结果	3	15.6174	15.6636	15.6461	15.8236	15.7486	15.6432	
(207Pb/204Pb)	4	15.6164	15.6607	15.6470	15.8236	15.7483	15.6446	
	5	15.6170	15.6628	15.6451	15.8236	15.7499	15.6444	
	6	15.6161	15.6614	15.6462	15.8240	15.7483	15.6451	
平均值	•	15.6166	15.6621	15.6464	15.8237	15.7489	15.6442	
有证标准物质推	達荐值	15.6094	15.6535	15.6375	15.8128	15.7395	15.6345	
相对误差(%	5)	0.0460	0.0546	0.0566	0.0691	0.0594	0.0623	
	1	38.5330	38.7378	38.7712	39.0200	39.0969	38.8566	
	2	38.5332	38.7389	38.7684	39.0207	39.0980	38.8572	
平行测定结果	3	38.5359	38.7435	38.7670	39.0206	39.0963	38.8549	
(208Pb/204Pb)	4	38.5330	38.7365	38.7693	39.0206	39.0962	38.8591	
	5	38.5350	38.7417	38.7646	39.0201	39.0990	38.8582	
	6	38.5328	38.7382	38.7678	39.0209	39.0958	38.8613	
平均值		38.5338	38.7394	38.7681	39.0205	39.0970	38.8579	
有证标准物质推	荐值	38.5075	38.7368	38.7312	38.9896	39.0656	38.8238	
相对误差(%	5)	0.0683	0.0068	0.0951	0.0792	0.0805	0.0878	

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项 目 名 称: <u>土</u>	襄和沉积物中铅同位素测定的方法验证
委托方(甲方):	广东省生态环境监测中心
受托方(乙方):	国家地质实验测试中心

1.实验室基本情况

本次验证实验于国家地质实验测试中心 Re-Os 同位素地球化学实验室完成。该实验室隶属于中国地质调查局 Re-Os 同位素地球化学重点实验室,主要承担前沿性、基础性、战略性地质调查,承担自然资源实验测试分析新技术新方法研究,仪器设备研发和科技成果转化应用,自然资源样品同位素测试分析。实验室配备有多接受电感耦合等离子质谱、电感耦合等离子质谱、热表面电离质谱等大型仪器以及独立的超结净化学处理实验室,可以满足本次验证实验的各项要求。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作 年限
李超	男	40	研究员	地球化学	15年

表 2 使用仪器情况登记表

仪器名称	规格型号	仪器出厂编号	性能状况(计量/ 校准状态、量程、 灵敏度等)	备注
MC-ICP-MS	Neptune Plus	SN01231N	208Pb: 0.1V/ppb	X+Jet 锥
电热板	EH20A-plus	80515E3044	40-220°C	

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法
硝酸	Fisher Scientific 公司、optimal	亚沸蒸馏纯化2次
	级别	
盐酸	Fisher Scientific 公司、optimal	亚沸蒸馏纯化2次
	级别	
氢氟酸	Fisher Scientific 公司、optimal	亚沸蒸馏纯化 2 次
	级别	
饱和溴水	天津大茂,AR 级	/

2. 样品

土壤样品 1、沉积物样品,土壤样品 2,土壤样品 3,土壤样品 4 和土壤样品 5。

3.分析步骤

3.2 样品溶解

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯(PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140℃下加热反应 10—12 小时。加热结束后,开盖,110℃在电热板上蒸干,再依次 加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟(等待上样)。最后加入 1ml 10ng/g Tl 溶液后,采用 MC-ICP-MS 测试 Pb 同位素。

3.3 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110°C加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO3 溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试

3.4 测试仪器参数和仪器稳定性

Pb 同位素比值测试在国家地质试验测试中心进行,采用多接收电感耦合等离子体质谱仪(Neptune MC-ICP-MS)测定 Pb 同位素组成。样品 Pb 同位素测试过程中仪器参数设置详见表 1。测试时每个样品均采集 160 个数据点,设置每个数据点的积分时间为 3s。为了减少 Pb 同位素测试时产生偏差,样品和标准溶液的浓度相对偏差控制范围为±10%以内。样品和标准溶液的介质均使用 2%的硝酸溶液。

表 4 Pb 同位素测试时的 MC-ICP-MS 仪器参数设置

仪器参数	设定条件
低真空	1.00e-003 mbar
高真空	9.27e-008 mbar
离子吸气压力	6.60e-009 mbar
高压	-10000.00 V
氩气分压	6.05 bar
冷却气体	16.00 L/min
运行功率	1200 W
辅助气流量	0.9 L/min
载气流量	1.0 L/min
样品 Pb 浓度	200 ng/mL

在 Neptune-plus MC-ICP-MS 测试样品 Pb 同位素过程中,国际铅标准样品 NIST 981 溶液作为检测标样,以监控质谱在测试过程的稳定性。本实验室对 NIST 981 标准 溶液的长期监控(n=20)的结果为: 206 Pb/ 204 Pb= 16.9318 ± 0.0015 (2SE)、 207 Pb/ 204 Pb= 15.4832 ± 0.0013 (2SE)和 208 Pb/ 204 Pb= 36.6713 ± 0.0032 (2SE),与推荐的参考值 16.937 ± 0.011 (2SE)(206 Pb/ 204 Pb)、 15.4910 ± 0.015 (2SE)(207 Pb/ 204 Pb)和 36.721 ± 0.036 (2SE)(208 Pb/ 204 Pb) 在误差范围内基本一致(Catanzaro et al., 1968)。

3.5 质量歧视校正

Pb 同位素在测试过程存在的仪器质量分馏采用外标法校正(即:往待测 Pb 溶液中加入 Tl 标样)。这个方法是假设 Tl 与 Pb 在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素的分馏因子来校正仪器测试 Pb 同位素过程中的分馏,具体的计算公式如下(White et al., 2000):

$$\left(\frac{^{208}Pb}{^{206}Pb}\right)_{t} = \left(\frac{^{208}Pb}{^{206}Pb}\right)_{m} \left(\frac{M(Pb)_{208}}{M(Pb)_{206}}\right)^{f} (1)$$

$$\left(\frac{^{205}Tl}{^{203}Tl}\right)_{t} = \left(\frac{^{205}Tl}{^{203}Tl}\right)_{m} \left(\frac{M(T1)_{205}}{M(T1)_{203}}\right)^{f} (2)$$

式中:设f为分馏系数,假定Pb与Tl在质谱测试过程存在同位素的分馏行为一致(Walder and Furuta, 1993; Belshaw et al., 1998; Rehkämper and Mezger, 2000); t和

m 分别为样品的真实值和测定值。根据加入已知 Tl 同位素比值的 Tl 标准溶液,由公式(2),可以求出 Tl 和 Pb 测试过程的仪器分馏系数 f。把分馏系数 f 代入公式(1)即可获得样品真实的 Pb 同位素比值。

4. 实验结果

针对土壤样品 1、沉积物样品、土壤样品 2、土壤样品 3、土壤样品 4 和土壤样品 5 的 Pb 同位素进行 6 次重复样分析结果如下表 5、6:

4.1 方法精密度测试数据

表 5 方法精密度测试数据

			试样品							
平行号	平行号		沉积物样	土壤样品	土壤样品	土壤样品	土壤样品			
		1	品品	2	3	4	5			
	1	18.8679	18.6167	18.6948	21.2128	18.7339	18.6771			
	2	18.8680	18.6160	18.6944	21.2124	18.7347	18.6769			
平行测定结果	3	18.8679	18.6164	18.6944	21.2131	18.7350	18.6769			
(206Pb/204Pb)	4	18.8680	18.6172	18.6842	21.2141	18.7347	18.6767			
	5	18.8679	18.6163	18.6837	21.2128	18.7351	18.6775			
	6	18.8674	18.6165	18.6838	21.2136	18.7350	18.6766			
平均值		18.8678	18.6165	18.6892	21.2131	18.7347	18.6770			
标准偏差		0.0002	0.0004	0.0058	0.0006	0.0004	0.0003			
相对标准偏差(%)	0.0011	0.0022	0.0312	0.0030	0.0023	0.0018			
	1	15.6152	15.6589	15.6432	15.8252	15.7447	15.6445			
	2	15.6152	15.6583	15.6426	15.8249	15.7452	15.6444			
平行测定结果	3	15.6150	15.6586	15.6428	15.8255	15.7459	15.6443			
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6150	15.6595	15.6425	15.8263	15.7455	15.6442			
	5	15.6147	15.6587	15.6425	15.8254	15.7459	15.6451			
	6	15.6144	15.6588	15.6424	15.8259	15.7453	15.6439			
平均值	平均值		15.6588	15.6427	15.8255	15.7454	15.6444			
标准偏差		0.0003	0.0004	0.0003	0.0005	0.0005	0.0004			
相对标准偏差(%)		0.0020	0.0024	0.0020	0.0034	0.0029	0.0024			
平行测定结果	1	38.5284	38.7653	38.7614	39.0259	39.0841	38.8628			
(²⁰⁸ Pb/ ²⁰⁴ Pb)	2	38.5289	38.7650	38.7602	39.0250	39.0860	38.8612			

			试样品								
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品				
		1	品	2	3	4	5				
	3	38.5279	38.7655	38.7606	39.0266	39.0878	38.8612				
	4	38.5272	38.7678	38.7521	39.0290	39.0867	38.8611				
	5	38.5271	38.7653	38.7514	39.0271	39.0876	38.8628				
	6	38.5267	38.7661	38.7510	39.0278	39.0865	38.8607				
平均值		38.5277	38.7658	38.7561	39.0269	39.0865	38.8616				
标准偏差		0.0008	0.0011	0.0051	0.0014	0.0013	0.0009				
相对标准偏差(%)	0.0022	0.0027	0.0132	0.0036	0.0034	0.0024				

4.2 方法准确度测试数据

表 6 方法准确度测试数据

				试札	羊品		
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		1	品	2	3	4	5
	1	18.8664	18.5777	18.6985	21.2219	18.7382	18.6786
	2	18.8665	18.5786	18.6969	21.2241	18.7383	18.6792
平行测定结果	3	18.8679	18.5804	18.6968	21.2241	18.7373	18.6787
(²⁰⁶ Pb/ ²⁰⁴ Pb)	4	18.8664	18.5772	18.6977	21.2244	18.7369	18.6800
	5	18.8669	18.5795	18.6958	21.2247	18.7387	18.6802
	6	18.8667	18.5781	18.6975	21.2251	18.7370	18.6811
平均值		18.8668	18.5786	18.6972	21.2241	18.7377	18.6796
有证标准物质推	荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681
相对误差(%)	0.0334	-0.0899	0.0830	0.1243	0.0386	0.0618
	1	15.6164	15.6618	15.6475	15.8238	15.7487	15.6441
	2	15.6162	15.6620	15.6462	15.8238	15.7493	15.6440
平行测定结果	3	15.6174	15.6636	15.6461	15.8236	15.7486	15.6432
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6164	15.6607	15.6470	15.8236	15.7483	15.6446
	5	15.6170	15.6628	15.6451	15.8236	15.7499	15.6444
	6	15.6161	15.6614	15.6462	15.8240	15.7483	15.6451
平均值		15.6166	15.6621	15.6464	15.8237	15.7489	15.6442
有证标准物质推	荐值	15.6094	15.6535	15.6375	15.8128	15.7395	15.6345

		试样品						
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品	
		1	品	2	3	4	5	
相对误差(%)	0.0460	0.0546	0.0566	0.0691	0.0594	0.0623	
	1	38.5330	38.7378	38.7712	39.0200	39.0969	38.8566	
	2	38.5332	38.7389	38.7684	39.0207	39.0980	38.8572	
平行测定结果	3	38.5359	38.7435	38.7670	39.0206	39.0963	38.8549	
(208Pb/204Pb)	4	38.5330	38.7365	38.7693	39.0206	39.0962	38.8591	
	5	38.5350	38.7417	38.7646	39.0201	39.0990	38.8582	
	6	38.5328	38.7382	38.7678	39.0209	39.0958	38.8613	
平均值		38.5338	38.7394	38.7681	39.0205	39.0970	38.8579	
有证标准物质推荐值		38.5075	38.7368	38.7312	38.9896	39.0656	38.8238	
相对误差(%)	0.0683	0.0068	0.0951	0.0792	0.0805	0.0878	

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项	目	名	称: <u>土壤</u>	和沉积物中铅同位素测定的方法验证
委:	托方	(甲方):	广东省生态环境监测中心
X	10 /1		1 /4 /• -	
受	托方	(乙方): .	河北地质大学

1.实验室基本情况

本次验证实验于河北地质大学区域地质与成矿重点实验室完成。该实验室隶属于河北省战略性关键矿产资源重点实验室为河北省省级重点实验室,主要负责矿物、岩石、土壤等样品的元素含量及同位素分析。实验室配备有多接受电感耦合等离子质谱、电感耦合等离子质谱、离子色谱仪等多件大型仪器以及独立的超结净化学处理实验室,可以满足本次验证实验的各项要求。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作 年限
尹露	男	34	助理研究员	地球化学	5年

表 2 使用仪器情况登记表

仪器名称	规格型号	仪器出厂编号	性能状况(计量/ 校准状态、量程、 灵敏度等)	备注
MC-ICP-MS	Neptune Plus	SN01231N	205Tl: 0.1V/ppb	Aridus, X+Jet 锥

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法
硝酸	阿拉丁,GR	亚沸蒸馏纯化2次
盐酸	阿拉丁,ACS	亚沸蒸馏纯化2次
氢氟酸	阿拉丁,电子级	亚沸蒸馏纯化1次
饱和溴水	天津大茂, AR 级	
SO ₂ 气体	大连大特气体有限公司,	
SU ₂ 气件	99.9%	
饱和 H ₂ SO ₃ 溶液	自制	SO_2 气体通入超纯水至饱和

2. 实验对象

土壤样品 1、沉积物样品,土壤样品 2,土壤样品 3,土壤样品 4 和土壤样品 5。

3.方法原理

称适量的土壤或沉积物样品粉末在聚四氟乙烯材质的溶样杯中,利用浓 HNO_3 、浓 HF、浓 HCl 和 H_2O_2 溶解样品;将样品转为 HBr 体系,用 0.5 mL 0.6 N HBr 溶解样品后离心。取含 Pb 上清液进行化学分离后,将得到的铅溶液转为硝酸体系,溶解

在3%溶液HNO₃介质中。按Pb/Tl含量比值为3:1的比例加入Tl溶液后在MC-ICP-MS测试Pb同位素。

4.试剂和材料

4.1 试剂

实验室的浓 HCl 和浓 HNO3 使用优级纯试剂经 Savillex DST 1000 亚沸蒸馏器蒸馏一次至两次制得。浓 HF 使用优级纯试剂经两次亚沸蒸馏制得。Milli-Q H₂O 采用 MillQ (Millipore, Bedford, MA, USA) 装置纯化,电阻率 $18.2M\Omega$; 双氧水(H_2O_2)从 Fisher Scientific 公司购买,为 optimal 级别;酚酞试剂;Pb 同位素国际标准溶液 (NIST SRM 981Pb) 和国际 Tl 标准溶液 (NIST SRM 997Tl) 均生产自 Spex certiprep 公司。AG 1-X8(200-400 mesh,Bio-Rad)离子交换树脂。新开封的 AG 1-X8 树脂 在使用前先用 4 N HNO3 充分摇匀并浸泡 8 h,沉淀后倒出上清液,加入适量的 Milli-Q H_2O ,再次充分摇匀并浸泡 4 h,沉淀后倒出上清液,如此反复用 4 N HNO3 和 Milli-Q H_2O 交替清洗 3 次,最终将树脂保存在 1N HCl 溶液中。

5.主要仪器和设备

电热板; 离心机; Neptune MC-ICP-MS; 电子天平; 百级超净实验室

6.分析步骤

6.1 样品溶解

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯(PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO₃,密封后放置在电热板上,在 140°C下加热反应 10—12 小时。加热结束后,开盖,110°C在电热板上蒸干,再依次 加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120°C下加热反应 8 小时后,开盖,110°C在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110°C在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟(等待上样)。对于空白样品,除了在空白试样杯中没有加入样品外,其余加入的试剂和溶样的步骤与实际样品完全一致。

6.2 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂(浑浊液)装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110℃加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO₃溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

6.3 Pb 同位素的测试以及仪器质量分馏校正

6.3.1 测试仪器参数和仪器稳定性

样品的 Pb 同位素比值测试在多接收电感耦合等离子体质谱仪(Neptune MC-ICP-MS)进行。Neptune MC-ICP-MS 配有 9 个法拉第电磁接收杯,测试样品 Pb 同位素过程中仪器参数详见表 1。测试时每个样品均采集 60 个数据点,设置每个数据点的积分时间为 3s。为了减少 Pb 同位素测试时产生偏差,样品和标准溶液的浓度相对偏差控制范围为±10%以内。样品和标准溶液的介质均使用 2%的硝酸溶液。

表 4 Pb 同位素测试时的 MC-ICP-MS 仪器参数设置

仪器参数	设定条件
低真空(Fore Vacuum)	1.00e-003 mbar
高真空(High Vacuum)	9.27e-008 mbar
离子吸气压力(Ion Getter Press)	6.60e-009 mbar
高压(High voltage)	-10000.00 V
氫中(Argon Max)	6.05 bar
冷却气体(Cool Gas)	16.00 L/min
运行功率(Running power)	1200 W
载气(Aux Gas)	0.9 L/min
进样速率(Sample Gas)	1.0 L/min

仪器参数	设定条件
进样液体中 Pb 浓度(Pb concentration in the solution introduction)	0.2 mg/L

在 Neptune MC-ICP-MS 测试样品 Pb 同位素过程中,间插测试国际铅标准样品 NIST981 溶液,以监控质谱仪测试过程的稳定性。本实验室对 NIST981 标准溶液的 长 期 监 控 (n=42) 的 结 果 为 : ²⁰⁶Pb/²⁰⁴Pb=16.9314±0.0013 (2SE) 、 ²⁰⁷Pb/²⁰⁴Pb=15.4841±0.0013 (2SE) 和 ²⁰⁸Pb/²⁰⁴Pb=36.6728±0.0033 (2SE) ,与推荐的 参考值 16.937±0.011 (2SE) (²⁰⁶Pb/²⁰⁴Pb) 、 15.4910±0.015 (2SE) (²⁰⁷Pb/²⁰⁴Pb) 和 36.721±0.036 (2SE) (²⁰⁸Pb/²⁰⁴Pb) 在误差范围内基本一致(Catanzaro et al., 1968)。 6.3.2 质量歧视校正

Pb 同位素组成测试过程潜在的仪器质量分馏采用元素外标法校正,就是往待测Pb 溶液加入 Tl 标样。这个方法是假设外标元素与目标元素在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素的分馏因子来校正仪器测试 Pb 同位素过程中的分馏,具体的计算公式如下(White et al., 2000):

$$\begin{pmatrix}
\frac{208}{Pb} \\
\frac{206}{Pb}
\end{pmatrix}_{t} = \begin{pmatrix}
\frac{208}{Pb} \\
\frac{206}{Pb}
\end{pmatrix}_{m} \begin{pmatrix}
\frac{M(Pb)_{208}}{M(Pb)_{206}}
\end{pmatrix}^{f} (1)$$

$$\begin{pmatrix}
\frac{205}{Tl} \\
\frac{203}{Tl}
\end{pmatrix}_{t} = \begin{pmatrix}
\frac{205}{Tl} \\
\frac{203}{Tl}
\end{pmatrix}_{m} \begin{pmatrix}
\frac{M(Tl)_{205}}{M(Tl)_{203}}
\end{pmatrix}^{f} (2)$$

式中:设 f 为分馏系数,假设 Pb 与 Tl 在仪器测试过程潜在同位素的分馏系数一致 (Walder and Furuta, 1993; Belshaw et al., 1998; Rehkämper and Mezger, 2000); t 和 m 分别代表为样品的真实值和测定值。根据加入已知 Tl 同位素比值的 Tl 标准溶液,由公式 (2),可以求出 Tl 和 Pb 测试过程的仪器分馏系数 f。把求出的分馏系数 f 代入公式 (1)即可校正并获得样品真实的 Pb 同位素比值。

7.实验结果

针对土壤样品 1; 沉积物样品,土壤样品 2,土壤样品 3,土壤样品 4 和土壤样品 5 的 Pb 同位素进行 6 次重复样分析结果如下表 5、6:

7.1 方法精密度测试数据

表 5 方法精密度测试数据

		试样品					
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		1	品	2	3	4	5
	1	18.8618	18.6055	18.6845	21.2115	18.7245	18.6824
	2	18.8611	18.6181	18.6899	21.2068	18.7414	18.6754
平行测定结果	3	18.8638	18.6132	18.6882	21.2117	18.7273	18.6834
$(^{206}\text{Pb}/^{204}\text{Pb})$	4	18.8618	18.6166	18.6901	21.2014	18.7393	18.6711
	5	18.8640	18.6023	18.6897	21.2087	18.7276	18.6828
	6	18.8602	18.6191	18.6912	21.2071	18.7386	18.6705
平均值		18.8621	18.6125	18.6889	21.2079	18.7331	18.6776
标准偏差		0.0015	0.0070	0.0024	0.0038	0.0074	0.0060
相对标准偏差(%)	0.0080	0.0376	0.0127	0.0179	0.0396	0.0322
	1	15.6080	15.6491	15.6349	15.8134	15.7328	15.6307
	2	15.6057	15.6578	15.6312	15.8094	15.7365	15.6345
平行测定结果	3	15.6102	15.6494	15.6348	15.8124	15.7354	15.6315
$(^{207}\text{Pb}/^{204}\text{Pb})$	4	15.6060	15.6563	15.6322	15.8051	15.7364	15.6337
	5	15.6102	15.6486	15.6336	15.8124	15.7363	15.6312
	6	15.6063	15.6572	15.6319	15.8085	15.7367	15.6330
平均值		15.6077	15.6531	15.6331	15.8102	15.7357	15.6324
标准偏差		0.0021	0.0045	0.0016	0.0031	0.0015	0.0015
相对标准偏差(%)	0.0133	0.0284	0.0100	0.0199	0.0094	0.0097
	1	38.5031	38.7253	38.7252	38.9862	39.0423	38.8542
	2	38.4970	38.7632	38.7244	38.9709	39.0575	38.8376
平行测定结果	3	38.5094	38.7205	38.7278	38.9830	39.0521	38.8589
$(^{208}\text{Pb}/^{204}\text{Pb})$	4	38.4973	38.7601	38.7217	38.9614	39.0578	38.8261
	5	38.5065	38.7260	38.7260	38.9819	39.0545	38.8563
	6	38.4965	38.7618	38.7258	38.9697	39.0577	38.8217
平均值		38.5016	38.7428	38.7252	38.9755	39.0537	38.8425
标准偏差		0.0055	0.0208	0.0020	0.0096	0.0060	0.0163
相对标准偏差(%)	0.0144	0.0537	0.0052	0.0248	0.0154	0.0419

7.2 方法准确度测试数据

表 6 方法准确度测试数据

		试样品						
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	1 神 1 一 一	
		1	品	2	3	4	土壤样品5	
	1	18.8636	18.6013	18.6881	21.2057	18.7253	18.6833	
	2	18.8613	18.6180	18.6905	21.2014	18.7408	18.6684	
平行测定结果	3	18.8611	18.6016	18.6840	21.2112	18.7258	18.6828	
$(^{206}{\rm Pb}/^{204}{\rm Pb})$	4	18.8581	18.6169	18.6922	21.2030	18.7368	18.6687	
	5	18.8616	18.6000	18.6897	21.2023	18.7266	18.6818	
	6	18.8622	18.6171	18.6919	21.2080	18.7417	18.6634	
平均值		18.8613	18.6092	18.6894	21.2053	18.7328	18.6747	
有证标准物质推	荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681	
相对误差(%)	0.0043	0.0745	0.0412	0.0357	0.0125	0.0355	
	1	15.6107	18.6013	15.6343	15.8133	15.7342	15.6315	
	2	15.6049	18.6180	15.6319	15.8078	15.7382	15.6332	
平行测定结果	3	15.6095	18.6016	15.6339	15.8117	15.7343	15.6314	
$(^{207}\text{Pb}/^{204}\text{Pb})$	4	15.6071	18.6169	15.6329	15.8089	15.7342	15.6342	
	5	15.6098	18.6000	15.6341	15.8135	15.7345	15.6301	
	6	15.6056	18.6171	15.6323	15.8101	15.7366	15.6325	
平均值	1	15.6079	18.6092	15.6332	15.8109	15.7353	15.6322	
有证标准物质推	荐值	15.6094	15.6535	15.6375	15.8128	15.7395	15.6345	
相对误差(%)	-0.0094	18.8817	-0.0273	-0.0121	-0.0265	-0.0150	
	1	38.5068	38.7292	38.7241	38.9856	39.0490	38.8586	
	2	38.4940	38.7615	38.7269	38.9692	39.0589	38.8323	
平行测定结果	3	38.5051	38.7275	38.7210	38.9801	39.0489	38.8583	
$(208 {\rm Pb}/204 {\rm Pb})$	4	38.4930	38.7593	38.7284	38.9721	39.0518	38.8245	
	5	38.5073	38.7253	38.7252	38.9828	39.0502	38.8548	
	6	38.4977	38.7594	38.7271	38.9751	39.0599	38.8203	
平均值		38.5007	38.7437	38.7255	38.9775	39.0531	38.8415	
有证标准物质推	荐值	38.5075	38.7368	38.7312	38.9896	39.0656	38.8238	
相对误差(%)	-0.0178	0.0178	-0.0148	-0.0311	-0.0320	0.0455	

土 壤 和 沉 积 物 铅 同 位 素测 定 方 法 验 证 报 告

项	Ħ	名	称:	土壤	和沉积物中铅同位素测定的方法验证
委:	托方	(甲方) :	广东省生态环境监测中心
	,		1 /4	· _	/ // I/Line // J
受:	托方	(7. 方).	中国科学院广州地球化学研究所

1.实验室基本情况

本次验证实验于同位素地球化学国家重点实验室完成。该实验室依托中国科学院广州地球化学研究所,实验室旨在开展引领学术前沿的同位素地球化学基础理论和方法的研究探索,加强同位素地球化学分析相关新技术、新方法的研发,揭示地球内部和浅表地质过程中元素和同位素组成及演变规律。实验室配备有多接受电感耦合等离子质谱、电感耦合等离子质谱、热电离质谱、激光剥蚀一电感耦合等离子体质谱等多件大型仪器以及独立的超结净化学处理实验室,可以满足本次验证实验的各项要求。

表 1 参加验证的人员情况登记表

姓名	性别	年龄	职务或职称	所学专业	从事相关分析工作 年限
彭冰钰	女	24	实验助理	地球化学	2
董飞羽	女	27	实验助理	地球化学	4

表 2 使用仪器情况登记表

仪器名称	规格型号	仪器出厂编 号	性能状况(计量/校准状态、量程、灵敏度等)
电感耦合等离子体质	Montuno Dlug	SN01289N	量程: 50V
谱仪	Neptune Plus	51NU12891N	灵敏度:100ppb Pb 溶液 ²⁰⁸ Pb~6.72V

表 3 使用试剂及溶剂登记表

名称	生产厂家、规格	纯化处理方法		
浓 HCl	阿拉丁,电子级	经 Savillex DST 1000 亚沸蒸馏器蒸馏一次		
浓 HNO ₃	門址 ,电丁级	至两次制得		
浓 HF	阿拉丁,电子级	经 Savillex DST 1000 亚沸蒸馏器两次亚沸		
/K Hr	四型1,电丁级	蒸馏制得		
Milli-Q H ₂ O	/	采用 MillQ (Millipore, Bedford, MA, USA)		
Willii-Q 112O	7	装置纯化		
双氧水 (H ₂ O ₂)	Fisher Scientific,	/		
/X 丰(八 (112O ₂)	optimal 级别	,		
酚酞试剂	/	/		
AG 1-X8 离子交换树脂	200-400 mesh,	,		
AU I-A0 內 1 又 1	Bio-Rad	7		

2.样品

分析样品六份,分别为: 土壤样品 1、沉积物样品、土壤样品 2、土壤样品 3、土壤样品 4 和土壤样品 5。

3.分析步骤

3.2 样品溶解

根据土壤和沉积物中铅的含量,称取待测含 Pb 样品 25-350 mg 于溶样杯 (PFA 材质)中,加入 3 mL 高纯 HF 和 1.5 mL 高纯 HNO3,密封后放置在电热板上,在 140℃下加热反应 10—12 小时。加热结束后,开盖,110℃在电热板上蒸干,再依次加入 2.4mL 高纯盐酸和 0.8ml 高纯硝酸,密封后放置在电热板上,在 120℃下加热反应 8 小时后,开盖,110℃在电热板上蒸干。然后向蒸干后的溶样杯中加入 1mL 0.6 mol/L HBr 溶液,开盖,110℃在电热板上蒸干,本步骤再重复 1 次。最后再用 1.0 mL 0.6 M HBr 溶液溶解,静置 0.5 小时后在离心机上以 4000 r 的速度离心 5 分钟(等待上样)。

3.3 化学分离

将适量阴离子交换树脂放入试剂瓶,并加入超纯水,静止倒掉上清液后,取 0.25mL 阴离子交换树脂 (浑浊液) 装填到树脂柱中(内径 0.6 cm,高 6.0 cm)。向树脂柱中缓慢加入 1 mL 超纯水,等待树脂柱中的溶液全部自然滴完后,缓慢加入 1 mL 6mol/L 盐酸溶液,自然滴完,以上步骤重复 3 次。向树脂柱中缓慢加入 2 mL 0.6 mol/L 溴酸溶液,自然滴完。取离心后的试样上清液加载于树脂柱上,待溶液滴完。加入 4 mL 0.6 mol/L 溴酸溶液,待溶液滴完。向树脂柱中缓慢加入 4 mL 6mol/L 盐酸溶液收集铅,此时需用干净的溶样杯收集溶液。将收集到的溶液(在溶样杯中),开盖放置于电热板上,110°C加热蒸干,待溶样杯冷却至室温,加入 1 mL 2% HNO3 溶液并在离心机上以 4000 r 的速度离心 5 分钟,取上清液用于 Pb 同位素的测试。

 步骤
 体积 ml
 目的

 0.25 ml
 阴离子交换树脂 AG1-X8 (200-400 目)

 6 M HCl
 3
 交叉洗三次

 Milli-Q H₂O
 3

表 4 阴离子交换树脂 AG1-X8(200-400 目)的 Pb 分离流程

步骤	体积 ml	目的	
0.6 M HBr	2 (0.5×4)	平衡树脂	
0.6 M HBr	0.5	上样	
0.6 M HBr	4	洗脱基质	
6 M HCl	2	接 Pb	

3.4 Pb 同位素的测试以及仪器质量分馏校正

3.4.1 测试仪器参数和仪器稳定性

本文件的 Pb 同位素的测定在 Thermo-Fisher Scientific Neptune Plus MC-ICP-MS 上。Neptune MC-ICP-MS 配有 9 个法拉第接收杯,测试样品 Pb 同位素过程中仪器参数详见表 5。测试时每个样品均采集 60 个数据点,设置每个数据点的积分时间为 3s。为了减少 Pb 同位素测试时产生偏差,样品和标准溶液的浓度相对偏差控制范围为±10%以内。样品和标准溶液的介质均使用 2%的硝酸溶液。Pb 同位素测试的杯结构分别为: Low3 (202Hg),Low2 (203Tl),Low1 (204Pb),C (205Tl),High1 (206Pb),High2 (207Pb),High3 (208Pb)。100 ppb 的 NBS 981 Pb 标准溶液对应 208Pb 的信号~6.72V。208Pb 同位素的测试信号强度介于 4~8V 都可以获得很好精度和准确度的 Pb 同位素数据。

在使用 MC-ICP-MS 测试 Pb 同位素过程中,间插测试国际铅标准样品 NIST 981 溶液,以监控质谱仪测试过程的稳定性。本实验室对国际 Pb NIST 981 标准 溶液的长期监控(n=100)的结果为: ²⁰⁶Pb/²⁰⁴Pb=16.9336±0.0010(2SD)、 ²⁰⁷Pb/²⁰⁴Pb=15.4863±0.0007(2SD)和 ²⁰⁸Pb/²⁰⁴Pb=36.6837±0.0022(2SD),与推 荐的参考值 16.937±0.011(2SD)(²⁰⁶Pb/²⁰⁴Pb)、15.4910±0.015(2SD)(²⁰⁷Pb/²⁰⁴Pb) 和 36.721±0.036(2SD)(²⁰⁸Pb/²⁰⁴Pb) 基本一致(Catanzaro et al., 1968)。

表 5 Neptune Plus MC-ICP-MS 工作参数

工作参数	调整值		
冷却器流量/(L·min ⁻¹)	16		
辅助气流量/(L·min-1)	0.85		
雾化器气压/Pa	2.6×10		
射频功率/W	1148		
积分时间(s)	4.194		
进样速度	100 μL/min		
每组测量次数	60		

工作参数	 调整值		
测量组数	1		

3.4.2 质量歧视校正

Pb 同位素在仪器测试过程中的质量分馏采用元素外标法,即在待测 Pb 样品溶液和 Pb 标准溶液中加入 Tl 标准溶液,通过在线监控 Tl 同位素来对仪器的分馏进行校正。此方法是假设外标元素 Tl 与 Pb 元素在仪器测试过程的同位素分馏因子一致,利用已知 Tl 同位素比值和指数分馏校正定律可求出测试过程中仪器的分馏因子,进而校正仪器测试 Pb 同位素过程中的分馏,具体计算方法如下:

$$(^{205}\text{Tl}/^{203}\text{Tl})_{\text{true}} / (^{205}\text{Tl}/^{203}\text{Tl})_{\text{meas}} = (M_{205}/M_{203})^{\beta\text{Tl}}$$

$$(^{20X}\text{Pb}/^{204}\text{Pb})_{\text{true}} / (^{20X}\text{Pb}/^{204}\text{Pb})_{\text{meas}} = (M_{20X}/M_{204})^{\beta\text{Pb}}$$

$$(2)$$

其中, β_{Tl} 和 β_{Pb} 分别是Tl和Pb的仪器质量分馏因子;(205 Tl/ 203 Tl) $_{meas}$ 和(20X Pb/ 204 Pb) $_{meas}$ 分别是Tl和Pb同位素比值的测量值,X指Pb的同位素206,207和208末尾数;(205 Tl/ 203 Tl) $_{true}$ 和(20X Pb/ 204 Pb) $_{true}$ 分别是Tl和Pb同位素比值的校正值(真实值); M为Tl和Pb的同位素的质量数。

在 NBS 981 Pb 溶液和要分析的样品中加入适量的 Tl 标准溶液, Tl 的加入量 按浓度比为 Pb: Tl = 10:1 为宜。在测试样品前,需要先准确测试 NBS 981 Pb 纯标准溶液,同时测样过程中每间隔 5~6 个样品也需要测试 NBS 981 Pb 纯标准溶液以确定测样前和测样过程中仪器保持稳定。

4.测试结果和表示

根据公式(1)可求得 β_{Tl} = ln[($^{205}Tl/^{203}Tl$)_{true}/($^{205}Tl/^{203}Tl$)_{meas}]/ln[(M_{205}/M_{203})],结合假设的 β_{Tl} = β_{Pb} ,代入公式(2)可得 β_{Tl} = β_{Pb} =ln[($^{20X}Pb/^{204}$ Pb)_{true}/($^{20X}Pb/^{204}$ Pb)_{meas}]/ln[(M_{20X}/M_{204})],最后可求得样品真实的Pb同位素比值:

$$(^{20X}Pb/^{204} Pb)_{true} = (^{20X}Pb/^{204} Pb)_{meas} \times (M_{20X}/M_{204})^{\beta Pb}$$

Pb 同位素比值保留至小数点第四位,按 ²⁰⁶Pb/²⁰⁴Pb±2SD、²⁰⁷Pb/²⁰⁴Pb±2SD、 ²⁰⁸Pb/²⁰⁴Pb±2SD 和 ²⁰⁷Pb/²⁰⁶Pb±2SD 表示。

4.1 方法精密度测试数据

表 6 方法精密度测试数据

		试样品					
平行号		土壤样品1	沉积物样 品	土壤样品2	土壤样品3	土壤样品4	土壤样品 5
	1	18.8690	18.6095	18.6854	21.2101	18.7318	18.6707
	2	18.8590	18.5978	18.6890	21.2013	18.7297	18.6722
平行测定结果	3	18.8591	18.5892	18.6813	21.1943	18.7300	18.6677
(206Pb/204Pb)	4	18.8550	18.5896	18.6754	21.1874	18.7307	18.6652
	5	18.8604	18.5901	18.6770	21.1951	18.7302	18.6644
	6	18.8650	18.6170	18.6727	21.1701	18.7326	18.6509
平均值		18.8613	18.5989	18.6801	21.1931	18.7308	18.6652
标准偏差		0.0050	0.0118	0.0062	0.0136	0.0011	0.0076
相对标准偏差	(%)	0.0264	0.0636	0.0334	0.0641	0.0061	0.0408
	1	15.6102	15.6498	15.6359	15.8133	15.7381	15.6337
	2	15.6102	15.6506	15.6382	15.8123	15.7378	15.6352
平行测定结果	3	15.6092	15.6558	15.6356	15.8119	15.7376	15.6357
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6087	15.6557	15.6383	15.8124	15.7416	15.6338
	5	15.6094	15.6556	15.6393	15.8141	15.7420	15.6337
	6	15.6112	15.6467	15.6374	15.8119	15.7400	15.6311
平均值		15.6098	15.6524	15.6375	15.8127	15.7395	15.6339
标准偏差		0.0009	0.0039	0.0011	0.0009	0.0020	0.0016
相对标准偏差	(%)	0.0057	0.0248	0.0093	0.0055	0.0125	0.0103
	1	38.5241	38.7259	38.7269	38.9879	39.0627	38.8222
	2	38.5099	38.7278	38.7392	38.9821	39.0619	38.8236
平行测定结果	3	38.5085	38.7431	38.7246	38.9813	39.0615	38.8278
(²⁰⁸ Pb/ ²⁰⁴ Pb)	4	38.5050	38.7434	38.7304	38.9958	39.0703	38.8230
	5	38.5075	38.7435	38.7346	39.0008	39.0715	38.8224
	6	38.5145	38.7254	38.7274	38.9814	39.0645	38.8103
平均值		38.5116	38.7349	38.7305	38.9882	39.0654	38.8216
标准偏差		0.0069	0.0093	0.0055	0.0083	0.0044	0.0059
相对标准偏差	(%)	0.0179	0.00241	0.0141	0.0214	0.0113	0.0152

4.2 方法准确度测试数据

表 7 方法准确度测试数据

		试样品					
平行号		土壤样品	沉积物样	土壤样品	土壤样品	土壤样品	土壤样品
		1	品	2	3	4	5
	1	18.8608	18.5994	18.6898	21.2085	18.7359	18.6840
	2	18.8603	18.5979	18.6893	21.2080	18.7379	18.6854
平行测定结果	3	18.8598	18.6003	18.6881	21.2086	18.7369	18.6842
(206Pb/204Pb)	4	18.8611	18.5993	18.6899	21.2078	18.7374	18.6840
	5	18.8603	18.5982	18.6922	21.2014	18.7376	18.6813
	6	18.8586	18.5983	18.6912	21.1998	18.7367	18.6814
平均值		18.8601	18.5989	18.6901	21.2057	18.7371	18.6834
有证标准物质批	主荐值	18.8605	18.5953	18.6817	21.1977	18.7305	18.6681
相对误差(%	(₀)	-0.0019	0.0193	0.0450	0.0378	0.0350	0.0818
	1	15.6106	15.6524	15.6308	15.8082	15.7380	15.6307
	2	15.6144	15.6508	15.6294	15.8080	15.7398	15.6322
平行测定结果	3	15.6136	15.6518	15.6294	15.8088	15.7387	15.6326
(²⁰⁷ Pb/ ²⁰⁴ Pb)	4	15.6150	15.6520	15.6312	15.8088	15.7384	15.6319
	5	15.6134	15.6505	15.6329	15.8078	15.7396	15.6294
	6	15.6114	15.6514	15.6319	15.8087	15.7380	15.6298
平均值		15.6131	15.6515	15.6309	15.8084	15.7388	15.6311
有证标准物质推荐值		15.6094	15.6535	15.6375	15.8128	15.7395	15.6345
相对误差(%	(₀)	0.0235	-0.0126	-0.0421	-0.0279	-0.0047	-0.0217
	1	38.5126	38.7312	38.7231	38.9703	39.0663	38.8563
	2	38.5189	38.7432	38.7187	38.9679	39.0723	38.8604
平行测定结果	3	38.5192	38.7448	38.7185	38.9712	39.0677	38.8612
(²⁰⁸ Pb/ ²⁰⁴ Pb)	4	38.5215	38.7445	38.7244	38.9723	39.0690	38.8585
	5	38.5182	38.7423	38.7284	38.9692	39.0709	38.8511
	6	38.5142	38.7424	38.7258	38.9717	39.0677	38.8533
平均值		38.5174	38.7414	38.7231	38.9704	39.0690	38.8568
有证标准物质推荐值		38.5075	38.7368	38.7312	38.9896	39.0656	38.8238
相对误差(%)		0.0257	0.0119	-0.0208	-0.0491	0.0087	0.0849