TB

山西省仪器仪表学会团体标准

T/SXICS XXXX-XXXX

纯水机/超纯水机系统监测参数校准规范

Calibration Specification for Monitoring Parameter of Laboratory

Pure & Ultra-pure Water System

(征求意见稿) (本草案完成时间: 2023 年 10 月)

在提交反馈意见时,请将您知道的相关专利连同支持性文件一并附上。

XXXX-XX-XX 发布

XXXX-XX-XX 实施

山西省仪器仪表学会发布

目录

引	言	(
1	范围		(1)
2	引用	文件	(1)
3	概述		(1)
4	计量	特性	(2)
5	校准	条件	(2)
6	校准	项目和校准方法	(3)
7	校准	结果表达	(6)
8	复校	时间间隔	(7)
附:	录 A	电导率标准溶液浓度及其电导率值 · · · · · · · · · · · · · · · · · · ·	(8)
附:	录 B	纯水机/超纯水机系统监测参数校准原始记录示例	(9)
附:	录 C	纯水机/超纯水机系统监测参数校准证书(内页)格式(12)
附:	录 D	电子单元引用误差的不确定度评定示例(13)
附:	录 E	仪器引用误差的不确定度评定示例 · · · · · · (15)
附:	录 F	仪器示值误差的不确定度评定示例 · · · · · (17)
附:	录 G	出水量示值误差的不确定度评定示例(称重法) · · · · · (20)
附:	录Ⅱ	出水量示值误差的不确定度评定示例(直接测量法)(24)
附:	录Ι	容量示值误差的不确定度评定示例(26)

引言

JJF 1071-2010《国家计量校准规范编写规则》、JJF 1001-2011《通用计量术语及定义》和 JJF 1059. 1-2012《测量不确定度评定与表示》共同构成支撑本规范编制工作的基础性系列规范。

本规范为首次发布。

纯水/超纯水机系统监测参数校准规范

1 范围

本规范适用于实验室用纯水/超纯水机、工业生产线纯水机/超纯水机中系统监测参数的校准。

2 引用文件

本规范引用了下列文件:

JJF 1071-2010 国家计量校准规范编写规则

JJG 376 电导率仪检定规程

GB/T 6682 分析实验室用水规格和实验方法

凡是注日期的引用文件,仅注日期的版本适用于本规范;凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本规范。

3 概述

绝水/超纯水机(以下简称纯水机)是原水经过精密滤芯、活性炭滤芯、反渗透装置等多级过滤装置,采用过滤、反渗透、电渗析器、离子交换、紫外灭菌等方法除去水中的固体杂质、盐离子、细菌病毒等,使水质达到实验室或工业用水标准的净水设备。纯水机主要应用于实验室用水、半导体、电子、食品医药、电镀行业、生物制品等行业。

纯水机主要由PP棉滤芯、碳粉滤芯或碳棒滤芯、电磁阀、增压泵、反渗透膜、比例调节阀、离子交换柱、紫外灭菌仪、超精密过滤器、水质监测探头、出水控制器,微电脑控制系统等组成。

4 计量特性

仪器主要计量技术指标见表1。

表1. 计量特性

			/ 7 -	
监测参数	校准方法		性能指标	
	常规校准方 法	仪器电	电子单元重复性	≤0.3%FS
电导率		子单元	电子单元引用误差	±2.0%FS
		部分	电导池常数示值误差	±0.01cm ⁻¹

表 1(续)

监测参数	校准方法		项目	性能指标
		仪器电 仪器引用误差		±2.5%FS
		极部分	仪器重复性	≤1.2%FS
	比对校准法		±20%	
	比州权性宏		≤5%	
出水量(容	直接测量法		流量示值误差	
量)	称重法	流量	±10%	

注: 以上指标不用于合格性判定,仅供参考。

5 校准条件

- 5.1 环境条件
- 5.1.1 环境温度: (20±10) ℃; 相对湿度: ≤85%。
- 5.1.2 交流电源: (220±22) V。
- 5.1.3 其他:周围应无影响校准系统正常工作的电磁干扰和机械振动。
- 5.2 校准用设备及配套设备
- 5.2.1 溶液电导模拟装置

溶液电导模拟装置是校准电子单元计量性能的标准器,由一组无感交流电阻组成。测量范围: $(0.05\sim2\times10^5)~\mu\mathrm{S\cdot cm^{-1}};$ 准确度: 0.1 级或以上。

5.2.2 电导率标准溶液

电导率标准溶液: $(1.5\sim200) \mu S \cdot cm^{-1}$, $20 \mu S \cdot cm^{-1}$ 及以下电导率标准溶液不确定度不大于 3 %, k=2; $200 \mu S \cdot cm^{-1}$ 以上电导率标准溶液不确定度不大于 1 %, k=2。

可使用氯化钾电导率溶液标准物质,也可选用氯化钾电导率固体标准物质按附录 A 的规定配制部分浓度标准物质。

5.2.3 标准电导率仪校准装置

标准电导率仪测量范围($0\sim1\times10^{\circ}$) μ S·cm⁻¹,纯水测量电极电导池常数为0.1或0.01,准确度0.2 级或优于0.2 级。使用前,需要用低电导率标准溶液对标准电导率仪进行校准。再用电导率不大于 $1\,\mu$ S·cm⁻¹($25\,^{\circ}$ C)去离子水将电导池清洗数次,后将标准电导率仪(含纯水测量电极)接入校准装置中,保持密闭环境,用纯水机出水冲洗装置管路。

5.2.4 流量测量仪

测量范围: (0~2000) mL/min; 最大允许误差: ±1.5%。

5.2.5 电子天平

测量范围: (0~200) g, 分度值为0.1 mg, ○级。

测量范围: (0~5000) g, 分度值为1 mg, ①级。

5.2.6 密度计

测量范围: (0.950~1.100) g/mL, 最大允许误差: ±0.001 g/mL。

5.2.7 量筒、容量瓶 A级。

A纵。

5.2.8 恒温装置

恒温装置用于控制标准溶液温度。温度波动性允许为±0.20℃。

5.2.9 其他

纯水管线、转换接头、滤纸、烧杯等。

6 校准项目和校准方法

如果纯水机中电导率仪方便拆卸,建议采用常规校准法校准,否则,选用比对校准法。

- 6.1 电导率参数校准
- 6.1.1 常规校准法
- 6.1.1.1 电子单元重复性

接入溶液电导模拟装置,调节电导池常数 $K_{\text{cell R}}$ 为1.000 cm⁻¹,温度示值为参考温度 T_{R} (通常为25 °C),选择电导率仪量程约上限值一半的标准电导 G_{s} (如100 μ S),读取电导率仪的测量值 κ_{M} 。重复上述操作6 次,按照式(1)计算电子单元重复性。

$$R = \frac{1}{\kappa_{\rm f}} \times \sqrt{\frac{\sum_{i=1}^{6} \left(\kappa_{\rm Mi} - \kappa_{M}\right)^{2}}{5}} \times 100\% \tag{1}$$

式中: $\kappa_{\text{\tiny E}}$ ——为电导率仪被测量程的上限值;

 κ_{Mi} ——为第i次测量的示值;

_ κ_M——算术平均值。

6.1.1.2 电子单元引用误差

接入溶液电导模拟装置,调节电导池常数 $K_{\text{cell R}}$ 为1.000 cm⁻¹,温度示值为参考温度 T_{R} (通常为25 °C),选择电导率仪最低量程(如200 μ S)范围内均匀选取5 个校准点,读取电导率的测量值 κ_{M} 。按照式(2)计算电子单元引用误差。

$$\frac{\Delta \kappa}{\kappa_{\rm F}} = \frac{\kappa_{\rm M} - \kappa_{\rm S}}{\kappa_{\rm F}} \times 100\% \tag{2}$$

式中: $\Delta \kappa$ ——示值误差;

 $\kappa_{\rm S}$ ——电导率标准值, $\kappa_{\rm S} = K_{\rm cell\,R} \cdot G_{\rm S}$;

 $\kappa_{\rm M}$ ——电导率测量值。

6.1.1.3 电导池常数示值误差

接入溶液电导模拟装置,调节量程中任一标准电导 G_s (如100 μ S),温度示值为参考温度(通常为25 °C)。设置电导池常数 $K_{cell\,R}$ 为1.000 cm⁻¹,读取电导率仪的测量值 κ_G 。分别设置电导池常数 K_{cell} 为0.800 cm⁻¹、1.200 cm⁻¹,读取电导率仪的测量值 κ_M 。按照式(3)计算电导池常数示值误差。

$$\Delta K_{\text{cell}} = K_{\text{cell R}} \times \frac{\kappa_{\text{M}}}{\kappa_{\text{G}}} - K_{\text{cell}}$$
 (3)

6.1.1.4 仪器引用误差

将纯水机电导率仪传感器充分洗涤后,调节电导池常数至传感器设定要求,放入电导率值为($10\sim200$) μ S·cm $^{-1}$ 的电导率标准溶液中,达到平衡后,读取电导率的测量值 $\kappa_{\rm M}$,重复测量3 次。按照式(4)计算仪器引用误差。

$$\frac{\Delta \kappa}{\kappa_{\rm F}} = \frac{\bar{\kappa}_{\rm M} - \kappa_{\rm E}}{\kappa_{\rm F}} \times 100\% \tag{4}$$

式中: κ_{F} ——标准溶液电导率值;

 $\kappa_{\rm M}$ ——电导率3 次测量值的平均值。

6.1.1.5 仪器重复性

方法同6.1.4,达到平衡后,读取电导率的测量值,重复测量6次。按照式(1)计算仪器重复性。

6.1.2 比对校准法

6.1.2.1 仪器示值误差

准备条件:冲洗管路,待纯水机电导率/电阻率仪表显示示值稳定后,将标准电导率仪/电阻率仪(以下简称标准仪)接入纯水机出水口,冲洗接入的校准管路至余留空气全部排出,观察标准仪的电极全部浸入校准装置的测量池中,以合适的流量继续冲洗至标准仪示值相对稳定后开始测量。

冲洗纯水机管路(5~10)min,待纯水机读值稳定后,同时记录一次标准仪和纯水机各自示值读数,重复记录10 次,分别计算标准仪和纯水机10 次示值读数平均值。按照式(5)计算示值相对误差 $\Delta \kappa$ 作为仪器示值误差校准结果。

$$\Delta \kappa = \frac{\bar{\kappa} - \bar{\kappa}_{s}}{\bar{\kappa}_{s}} \times 100\% \tag{5}$$

式中: κ ——纯水机电导率10 次读数平均值;

 $\kappa_{\rm s}$ ——标准仪电导率10 次测量值的平均值。

6.1.2.2 仪器稳定性

待纯水机读值稳定后,以标准仪6 次测量平均值作为标准值 κ ,每隔5 min,记录一次标准仪标准值,共记录6 次,按公式(6)计算仪器稳定性M。

$$M = \frac{\overline{K}_{\text{smax}} - \overline{K}_{\text{smin}}}{\overline{K}_{\text{s}}} \times 100\%$$
(6)

式中: M——仪器稳定性;

 κ_{smax} ——标准仪标准最大值;

 $_{\kappa_{\text{smin}}}^{-}$ ——标准仪标准最小值;

 $_{\kappa_{s}}^{-}$ 标准仪标准值平均值。

- 6.2 出水量(容量)参数校准
- 6.2.1 出水量示值误差
- 6.2.1.1 称重法。设置纯水机为常用流量(如 1 L/min),待纯水机出水流量稳定后,在纯水出口处用烧杯盛接,用秒表计时(1~5)min,电子天平称量纯水的质量,密度计测量透析液密度,计算出流量。测量 3 次,记录纯水的质量、密度,纯水机出水量示值误差按式(7)计算,取误差最大值作为测量结果。

$$\Delta v = \frac{v_0 - \frac{m}{\rho \times t}}{\frac{m}{\rho \times t}} \times 100\% \tag{7}$$

式中: Δv ——纯水机出水量示值误差;

m ——烧杯内纯水质量;

t——纯水流出时间;

 ρ ——纯水密度;

 v_0 ——纯水机出水量设定值或者监测值。

6.2.1.2 直接测量法。连接流量检测仪至纯水机出口处,设置纯水机为常用流量(如1 L/min),待纯水机出水流量稳定后,记录纯水机监控流量和流量检测仪流量,测量3次,纯水机出水量示值误差按式(8)计算,取误差最大值作为测量结果。

$$\Delta v = \frac{v_0 - v_i}{v_i} \times 100\% \tag{8}$$

式中: Δv——纯水机出水量示值误差;

 v_0 ——纯水机流量监控值(如无流量监控值按设定值计算);

v,——流量检测仪测量值。

6.2.2 容量示值误差

设置纯水机为常用取水量(如1L),在纯水出口处用烧杯盛接,电子天平称量纯水的质量,密度计测量透析液密度,计算出容量。测量3次,记录纯水的质量、密度,纯水机容量示值误差按式(9)计算,取误差最大值作为测量结果。

$$\Delta V = \frac{V_0 - \frac{m}{\rho}}{\frac{m}{\rho}} \times 100\% \tag{9}$$

式中: ΔV ——纯水机流量示值误差;

m ——烧杯内纯水质量;

 ρ ——纯水流出时间;

V₀——纯水机容量设定值。

7 校准结果表达

经校准后的仪器,应填发校准证书,并应给出各校准项目的校准结果及示值误差 的测量不确定度。

当用户要求时,可以根据用户提供的计量特性最大允许误差进行符合性判定,并 将结论列入校准证书。

8 复校时间间隔

根据被校纯水机/超纯水机的使用情况自行确定复校时间间隔,建议一般为1年。

电导率标准溶液浓度及其电导率值

	35°C	0.131 10	0.015 353	0.001 687 6	0.000 176 5
(25°C	0.11131	0.012 852	0.001 408 3	0.000 146 5
电导率/ (S・cm ⁻¹)	20°C	0.101 70	0.011 644	0.001 273 7	0.000 132 2
甲	18°C	0.097 80	0.011 163	0.001 220 0	0.000 126 7
	15°C	0.092 12	0.010455	0.001 141 4	0.000 118 5
基准溶液 KCl o/1 000 mI 溶液		74.245 7	7.436 5	0.744 0	将3号溶液100 mL稀 释至1 000 mL
基准溶液 KCI o/1 000 o容溶	Allie control (東空軍)	71.135 2	7.419 13	0.745 263	0.074 528
※ 孫 孫 岳 吕	(B/X11 11 1	1	2	3	4

注:应用上述标准溶液时必须遵守如下条件:
1.表中所列标准值扣除了配置标准溶液的水的电导率。
2.电导率固体标准物质在110°C下烘烤4h后才能配置标准溶液。
3.按表2规定的环境条件配置标准物质。
4.推荐使用一等1L容量瓶、分度值为0.1 mg的天平。

附录 B

纯水机/超纯水机系统监测参数校准原始记录格式

文件受控编	号: 2	ZCJL-J	ЛL- A/0)		证=	片编号:		
客户名	名称								
样品名	3称					出厂组	扁号		
型号规	包格				,	测量	量范围		
制造单	位位					不确定度/最 差/准确	100 000 000 000		
使用位	置					管理结	ALCOHOL SERVICES		
校准时	计间					校准)			
本次校准所	用的	依据、	环境条件:						
校准依扣	居								
温度			°C	湿度	%RH		其他		
校准地点	点		,			,		*	
本次校准使	用的	标准器	4(包括辅助设	设备):					
名称		业号 记格	编号	测量范围	确	确定度或准 度等级或最 に允许误差	证书号/有效期		溯源机构
		-		校	准员:		核验	员:	

文件受控编号:	ZCJL-JL-205	B/0

证书编号:

1 电导率参数校准

1.1 常规校准法(电导池常数参考值 $K_{cell\,R}$: ______ cm $^{-1}$; 参考温度 T_R : ______℃)

1.1.1 电子单元重复性

标准 电导率	量程 上限值			测量值/		平均值/	标准 偏差/	重复性		
但分类 /(μS/cm)	/(µS/cm)	1	2	3	4	5	6	(µS/cm)	(µS/cm)	/%FS

1.1.2 电子单元引用误差

量程上限值/	标准电导	标准电导率	测量值	误差	引用误差	不确定度
(µS/cm)	/µS	/(µS/cm)	/(µS/cm)	/(µS/cm)	/%FS	U(k=2)
,						
1						

1.1.3 电导池常数示值误差

初始电导率/ (μS/cm)	常数标称值 /cm ⁻¹	电导率测量值 /(μS/cm)	常数实测值 /cm ⁻¹	常数示值误差 /cm ⁻¹
5				

1.1.4 仪器引用误差

溶液标准值	电导	异率测量值/(μS/	(cm)	电导率平均	不确定度 U	
/(µS/cm)	1	2	3	值/(µS/cm)	/%FS	(k=2)

1.1.5 仪器重复性 (标准溶液的电导率值: ______μS/cm)

溶液标 准值/			测量值/	平均	标准 偏差/	重复			
(μS/cm)	1	2	3	4	5	6	值/ (µS/cm)	ル州左/ (μS/cm)	性 /%FS

1.2 比对校准法

1.2.1 仪器示值误差

读数来源					平均值/	示值	不确						
以 数不修	1	2	3	4	5	6	7	8	9	10	(µS/cm)	误差 /%	定度 <i>U</i> (<i>k</i> =2)
仪器													
标准器													

1.2.2 仪器稳定性

读数来源			测	最大值/	最小值/	稳定				
以 对个你	0 min	5 min	10 min	15 min	20 min	25 min	30 min	(µS/cm)	(µS/cm)	性/%
标准仪器										

第2页共3页

文件受控编号:ZCJL-	-JL-205 B/0			证书编号:					
2 出水量示值误	差								
2.1 称重法(纯) 纯水流	水密度: 实际流量/	kg/L)	直(或监测	*		1	不确定度 U		
出量/g	(L/min)		(L/min)	误差/	%	示值误差/%	(k=2)		
	*								
2.2 直接测量法									
实际流量/(L/mi		设定值(或监测值) /(L/min)		误差/%		·值误差/%	不确定度 <i>U</i> (<i>k</i> =2)		
					- 0				
3 容量示值误差	·					•			
纯水流出量/kg 实际容量/L		设定值(或监测 值)/L		误差/%		示值误差/%	不确定度 U (k=2)		
		要求选	取:	L		•	1		

□所校准点依据客户要求选取: _____。

附录 C

纯水机/超纯水机系统监测参数校准证书(内页)格式

杉	交准项目	校准结果					
电	导率参数						
	电子单元重复 性	标准值/(µS/cn	n)	重	重复性/%FS		
	生	标准值/(µS/cm)		 用误差/%FS	不确定度 <i>U(k</i> =2)		
	.1. > 4 - 3 H	が正直/(µS/eIII)	J17	11 八	7 · 阿龙文 (
	电子单元引用 误差						
哈和							
常规校 准法	古 巴 沁	标称值/cm ⁻¹		示	值误差/cm ⁻¹		
	电导池常数示 值误差						
		上次	性値/(µS/cm) 引用误差/%FS				
	仪器引用误差	标准值/(µS/cm)	71 F	· · · · · · · · · · · · · · · · · · ·	不确定度 U(k=2)		
	仪器重复性 -	标准值/(μS/cn	n)	重	l 复性/%FS		
	以 价里友性						
	仪器示值误差 -	标准值/(µS/cm)		:值误差/%	不确定度 U(k=2)		
比对校	汉						
准法	仪器稳定性	标准值/(µS/cn	n)	稳定性/%			
	以 船 心 足 口						
出	水量参数						
称重法	出水量示值误	设定值(或监测值)/(L	/min)	示值误差/%	不确定度 U(k=2)		
你里亿	差						
直接测	出水量示值误	设定值(或监测值)/(L	/min)	示值误差/%	不确定度 U(k=2)		
量法	差						
容量参数							
容量	量示值误差	设定值(或监测值)/(L	/min)	示值误差/%	不确定度 U(k=2)		
нэ	7.4.117.007						

附录 D

电子单元引用误差的不确定度评定示例

D. 1 测量模型

$$\frac{\Delta \kappa}{\kappa_{\rm F}} = \frac{\kappa_{\rm M} - \kappa_{\rm S}}{\kappa_{\rm F}} \times 100\% \tag{D.1}$$

式中: $\Delta \kappa$ ——示值误差;

 κ_{S} ——标准电导率仪, $\kappa_{\text{S}} = K_{\text{cell R}} \cdot G_{\text{S}}$;

 κ_{M} ——电导率测量值;

 $\kappa_{\scriptscriptstyle F}$ ——为电导率仪被测量程的上限值,2.000 μ S·cm⁻¹。

D. 2 不确定度来源

测量结果不确定度来源主要与测量重复性、仪器分辨力以及标准器有关。

D. 3 标准不确定度评定

D. 3.1 测量重复性引入的标准不确定度 $u_1(\kappa_M)$

电导率仪标准器输出标准电导 $100\,\mu\text{S}$,将电导率仪设置电导池常数参考值 $K_{\text{cell R}}$: $1.000\,\text{cm}^{-1}$,温度示值为参考温度 T_{R} (通常为 $25\,^{\circ}$ C)。在重复性条件下,用电导率仪测量 $10\,$ 次电导率。测量结果见表 D.1。

表 D. 1

标准值		测量值/(μS·cm ⁻¹)									s/
/(μS·cm ⁻¹)	1	2	3	4	5	6	7	8	9	10	(μS·cm ⁻¹)
100	99.97	99.98	99.97	99.96	99.96	99.93	99.97	99.95	99.95	99.99	0.017

标准偏差由公式 (D.2) 计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (\kappa_{Mi} - \overline{\kappa}_{M})^{2}}{n-1}}$$
 (D.2)

实际校准时取 1 次测量值作为测量结果,则 $u_1(\kappa_{\rm M}) = s = 0.017 \mu {\rm S \cdot cm}^{-1}$

D. 3. 2 被测仪器分辨力引入的标准不确定度 $u_2(\kappa_{\rm M})$

电导率仪分辨力为 0.01 μS·cm-1, 分辨力引入的标准不确定度

$$u_2(\kappa_{\mathrm{M}}) = 0.01 \,\mu\mathrm{S} \cdot \mathrm{cm}^{-1} \times 0.29 = 0.0029 \,\mu\mathrm{S} \cdot \mathrm{cm}^{-1}$$

由于 $u_1(\kappa_{\mathrm{M}})$ 大于 $u_2(\kappa_{\mathrm{M}})$,所以舍去 $u_2(\kappa_{\mathrm{M}})$,只考虑 $u_1(\kappa_{\mathrm{M}})$ 。

D. 3. 3 标准器引入的标准不确定度 $u(\kappa_s)$

电导率仪标准器扩展不确定度 $U_{\rm rel}=0.07\%$ (k=2),则

$$u(\kappa_s) = 0.07\% \div 2 \times 100 \,\mu\text{S} \cdot \text{cm}^{-1} = 0.035 \,\mu\text{S} \cdot \text{cm}^{-1}$$

D. 4 合成标准不确定度

D. 4.1 标准不确定度汇总表

表 D. 2

不确定度来源	不确定度值
测量重复性引入的标准不确定度 $u_{\scriptscriptstyle \rm I}(\kappa_{\scriptscriptstyle m M})$	0.017 μS·cm ⁻¹
标准器引入的标准不确定度 $u(\kappa_s)$	0.035 μS·cm ⁻¹

D. 4.2 合成标准不确定度

$$u_{\rm c} = \sqrt{u_1^2(\kappa_{\rm M}) + u^2(\kappa_{\rm S})} = 0.039 \,\mu{\rm S}\cdot{\rm cm}^{-1}$$

D.5 扩展不确定度

取包含因子 k=2, 扩展不确定度:

$$U = \frac{k \times u_{c}}{\kappa_{F}} = \frac{2 \times 0.039 \ \mu\text{S/cm}}{200 \ \mu\text{S/cm}} \times 100\% = 0.08 \%\text{FS}$$

附录 E

仪器引用误差的不确定度评定示例

E. 1 测量模型

$$\frac{\Delta \kappa}{\kappa_{\rm E}} = \frac{\kappa_{\rm M} - \kappa_{\rm E}}{\kappa_{\rm E}} \times 100\% \tag{E.1}$$

式中: $\Delta \kappa$ ——示值误差:

 $\kappa_{\scriptscriptstyle F}$ ——标准溶液电导率值;

 $_{\kappa_{\rm M}}^{-}$ 电导率3 次测量值的平均值;

 κ_{F} ——为电导率仪被测量程的上限值,200 μ S·cm⁻¹。。

E. 2 不确定度来源

测量结果不确定度来源主要与测量重复性、仪器分辨力以及标准溶液有关。

E.3 标准不确定度评定

E. 3.1 测量重复性引入的标准不确定度 $u_1(\kappa_M)$

将纯水机电导率仪传感器充分洗涤后,调节电导池常数至传感器设定要求,放入电导率值为 $146.5~\mu S \cdot cm^{-1}$ 的电导率标准溶液中,达到平衡后,读取电导率的测量值 κ_{M} 。在重复性条件下,用电导率仪测量 10~次电导率。测量结果见 E.1。

表 E.1

标准值		测量值/(μS·cm ⁻¹)									s/
/(μS·cm ⁻¹)	1	2	3	4	5	6	7	8	9	10	(μS·cm ⁻¹)
146.5	147.0	147.1	147.0	147.8	147.5	147.2	147.3	147.6	147.3	147.1	0.269

标准偏差由公式(E.2)计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (\kappa_{Mi} - \overline{\kappa}_{M})^{2}}{n-1}}$$
 (E.2)

实际校准时取 3 次测量值作为测量结果,则 $u_1(\kappa_{\rm M}) = \frac{s}{\sqrt{3}} = 0.155 \,\mu{\rm S\cdot cm}^{-1}$

E. 3. 2 被测仪器分辨力引入的标准不确定度 $u_2(\overline{\kappa}_{\rm M})$

电导率仪分辨力为 0.1 μS·cm⁻¹, 分辨力引入的标准不确定度

$$u_2(\kappa_{\rm M}) = 0.1 \,\mu{\rm S} \cdot {\rm cm}^{-1} \times 0.29 = 0.029 \,\mu{\rm S} \cdot {\rm cm}^{-1}$$

由于
$$u_1(\overline{\kappa}_M)$$
大于 $u_2(\overline{\kappa}_M)$, 所以舍去 $u_2(\overline{\kappa}_M)$, 只考虑 $u_1(\overline{\kappa}_M)$ 。

E. 3. 3 标准溶液引入的标准不确定度 $u(\kappa_{E})$

标准溶液的扩展不确定度 $U_{\text{rel}} = 0.25\%$ (k = 2),则

$$u(\kappa_s) = 0.25\% \div 2 \times 146.5 \ \mu\text{S} \cdot \text{cm}^{-1} = 0.183 \ \mu\text{S} \cdot \text{cm}^{-1}$$

E. 4 合成标准不确定度

E.4.1 标准不确定度汇总表

表 E. 2

不确定度来源	不确定度值
测量重复性引入的标准不确定度 $u_{\rm l}(\kappa_{\rm M})$	0.155 μS·cm ⁻¹
标准器引入的标准不确定度 $u(\kappa_s)$	0.183 μS·cm ⁻¹

E.4.2 合成标准不确定度

$$u_{\rm c} = \sqrt{u_1^2(\kappa_{\rm M}) + u^2(\kappa_{\rm S})} = 0.24 \,\mu{\rm S}\cdot{\rm cm}^{-1}$$

E.5 扩展不确定度

取包含因子 k=2, 扩展不确定度:

$$U = \frac{k \times u_{c}}{\kappa_{F}} = \frac{2 \times 0.24 \ \mu\text{S/cm}}{200 \ \mu\text{S/cm}} \times 100\% = 0.3 \%\text{FS}$$

附录 F

仪器示值误差的不确定度评定示例

F. 1 测量模型

$$\Delta \kappa = \frac{\overline{\kappa} - \overline{\kappa}_s}{\overline{\kappa}_s} \times 100\%$$
 (F.1)

式中: $\Delta \kappa$ ——示值误差;

 κ ——纯水机电导率10 次读数平均值;

 $\kappa_{\rm s}$ ——标准仪电导率10 次测量值的平均值。

F. 2 不确定度来源

测量结果不确定度来源于两方面:一纯水机在线电导率仪测量重复性、仪器分辨力;二标准器测量重复性、分辨力、测量不准。

F.3 标准不确定度评定

- F. 3. 1 纯水机在线电导率仪引入的标准不确定度 $u(\overline{\kappa})$
- F. 3. 1. 1 在线电导率仪测量重复性引入的标准不确定度 $u_1(\vec{\kappa})$

冲洗纯水机管路(5~10) min, 待纯水机读值稳定后, 同时记录一次标准仪和纯水机各自示值读数, 重复记录10 次。测量结果见表F.1。

表 F.1

读数				,	测量值/(μS·cm ⁻¹)				平均值/	s/
类型	1	2	3	4	5	6	7	8	9	10	$(\mu S \cdot cm^{-1})$	(μS·cm ⁻¹)
κ_i	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.055	0.0550	0
$\kappa_{{ m S}i}$	0.0553	0.0558	0.0560	0.0551	0.0552	0.0553	0.0556	0.0553	0.0562	0.0549	0.05547	0.000416

标准偏差由公式(F.2)计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (\kappa_{Mi} - \overline{\kappa}_{M})^{2}}{n-1}}$$
 (F.2)

实际校准时取 10 次测量值作为测量结果,则 $u_1(\bar{\kappa}) = \frac{s_{\bar{\kappa}}}{\sqrt{10}} = 0 \,\mu\text{S} \cdot \text{cm}^{-1}$

F. 3. 1. 2 分辨力引入的标准不确定度 $u_2(\kappa)$

电导率仪分辨力为 0.001 μS·cm⁻¹, 仪器分辨力引入的标准不确定度

$$u_2(\kappa) = 0.001 \,\mu\text{S} \cdot \text{cm}^{-1} \times 0.29 = 0.00029 \,\mu\text{S} \cdot \text{cm}^{-1}$$

由于 $u_1(\overline{\kappa})$ 小于 $u_2(\overline{\kappa})$,所以舍去 $u_1(\overline{\kappa})$,只考虑 $u_2(\overline{\kappa})$ 。

- F. 3. 2 标准器引入的标准不确定度 $u(\kappa_s)$
- F. 3. 2. 1 标准器测量重复性引入的标准不确定度 $u_1(\overline{\kappa}_s)$

根据表 F.1 可得:
$$u_1(\kappa_s) = \frac{s_{\kappa_s}}{\sqrt{10}} = 0.000132 \,\mu\text{S} \cdot \text{cm}^{-1}$$

F. 3. 2. 2 标准器分辨力引入的标准不确定度 $u_2(\kappa_s)$

标准器分辨力为 0.0001 μS·cm⁻¹, 仪器分辨力引入的标准不确定度

$$u_2(\bar{\kappa}_S) = 0.0001 \,\mu\text{S} \cdot \text{cm}^{-1} \times 0.29 = 0.000029 \,\mu\text{S} \cdot \text{cm}^{-1}$$

由于 $u_1(\overline{\kappa}_s)$ 大于 $u_2(\overline{\kappa}_s)$, 所以舍去 $u_2(\overline{\kappa}_s)$, 只考虑 $u_1(\overline{\kappa}_s)$ 。

F. 3. 2. 3 标准器测量不准引入的标准不确定度 $u_3(\kappa_s)$

标准器的准确度为 0.2 级,则仪器引用误差不超过±0.40%FS,按均匀分布计算,则 $u(\kappa_s)=0.4\%\div\sqrt{3}\times0.2~\mu\mathrm{S}\cdot\mathrm{cm}^{-1}=0.00046~\mu\mathrm{S}\cdot\mathrm{cm}^{-1}$

F. 3. 2. 4 标准不确定度 $u(\kappa_s)$ 的合成

因各输入量互不相关,所以 $u(\bar{\kappa}_s) = \sqrt{u_1^2(\bar{\kappa}_s) + u_3^2(\bar{\kappa}_s)} = 0.000479 \,\mu\text{S} \cdot \text{cm}^{-1}$

F. 4 合成标准不确定度

F. 4.1 标准不确定度汇总表

标准不确定度汇总见表 F.2。

表 F. 2

不确定度来源	不确定度值	灵敏系数
在线电导率仪分辨力引入的标准不确定度 $u_1(\overline{k})$	$0.00029 \mu \mathrm{S \cdot cm^{-1}}$	c_1 : 18.02776 (μ S·cm ⁻¹) -1

表 F. 2 (续)

不确定度来源	不确定度值	灵敏系数		
标准器测量重复性引入的标准不确定度 $u_1(\kappa_s)$	0.000132 μS·cm ⁻¹	c_2 : -17.87501 (μ S·cm ⁻¹) -1		
标准器测量不准引入的 标准不确定度 $u_3(\kappa_s)$	0.00046 μS·cm ⁻¹	c ₂ : -17.87301 (μS·cm ·) ·		

F. 4.2 合成标准不确定度

$$u_{\rm c} = \sqrt{c_1^2 u_1^2 (\kappa) + c_2^2 u^2 (\kappa)} \times 100\% = 1\%$$

F.5 扩展不确定度

取包含因子 k=2,扩展不确定度: $U=k\times u_{\rm c}=2\%$

附录 G

出水量示值误差的不确定度评定示例(称重法)

G. 1 测量模型

$$\Delta v = \frac{v_0 - \frac{m}{\rho \times t}}{\frac{m}{\rho \times t}} \times 100\%$$
 (G.1)

式中: Δν ——纯水机流量示值误差;

m ——烧杯内纯水质量;

t——纯水流出时间;

ρ——纯水密度;

v。——纯水机出水量设定值或者监测值。

设 $v = \frac{m}{\rho \times t}$, v为实际流量值,则可以得:

$$\Delta v = \frac{v_0 - v}{v} \times 100\% \tag{G.2}$$

G. 2 不确定度来源

测量结果不确定度和测量重复性、标准器分辨力、标准器测量不准有关。

G.3 标准不确定度评定

纯水机流量通常为设定值,在本例中视其为常数,所以只需考虑纯水机的实际流量引入的标准不确定度 u(v)。

G. 3.1 电子天平引入的标准不确定度 $u_r(m)$

G. 3. 1. 1 电子天平测量重复性引入的标准不确定度 $u_{rl}(m)$

设置纯水机出水量为1 L/min,待纯水机出水流量稳定后,在纯水出口处用烧杯盛接,用秒表计时1 min,电子天平称量纯水的质量,密度计测量透析液密度,计算出水量。重复测量10次。测量结果见表G.1。

			7K 4					
读数			质量平	质量				
类型	1 2 3 4		4	5	均值/g	s/g		
m_i/g	1025.825	1023.118	1024.183	1021.613	1023.109	1023.9396	1.7453	
$\rho_i/(g/cm^3)$	0.9970	0.9972	0.9980	0.9973	0.9975	1023.9390	1./433	
读数			密度平	密度				
类型	5	6	7	8	9	均值 /(g/cm³)	$s/(g/cm^3)$	
m_i /g	1024.876	1026.452	1021.779	1025.803	1022.638	0.99738	0.000301	
$\rho_i/(g/cm^3)$	0.9971	0.9973	0.9975	0.9977	0.99/38	0.000301		
	纯水机的实际流量 ν=1.027 L/min							

表 G. 1

标准偏差由公式(G.2)计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (m_i - \overline{m})^2}{n-1}}$$
 (G.2)

实际校准时取 1 次测量值作为测量结果,则 $u_{rl}(m) = \frac{s_m}{\sqrt{1 \times m}} \times 100\% = 0.17\%$

G. 3. 1. 2 电子天平分辨力引入的标准不确定度 $u_{r2}(m)$

电子天平分辨力为
$$0.001$$
 g,则 $u_{r2}(m) = \frac{0.001 \text{ g} \times 0.29}{m} \times 100\% = 0.00003\%$ 由于 $u_{r1}(m)$ 大于 $u_{r2}(m)$,所以舍去 $u_{r2}(m)$,只考虑 $u_{r1}(m)$ 。

G. 3. 1. 3 电子天平测量不准引入的标准不确定度 $u_{r3}(m)$

电子天平级别为①级,在测量范围 2000 g< $m \le 5100$ g 内,最大允许误差为±15 mg,

按均匀分布计算,则
$$u_{r3}(m) = \frac{15 \text{ mg}}{\sqrt{3} \times m} \times 100\% = 0.085\%$$

G.3.1.4 标准不确定度 $u_r(m)$ 的合成

因各输入量互不相关,所以
$$u_{\rm r}(m) = \sqrt{u_{\rm rl}^2(m) + u_{\rm r3}^2(m)} = 0.19\%$$

- G. 3. 2 密度计引入的标准不确定度 $u_r(\rho)$
- G. 3. 2. 1 密度计测量重复性引入的标准不确定度 $u_{rl}(\rho)$

方法同 G.3.2.1,可得
$$u_{rl}(\rho)$$
= 0.03%

G. 3. 2. 2 密度计分辨力引入的标准不确定度 $u_{r2}(\rho)$

方法同 G.3.1.2,可得
$$u_{r2}(\rho)$$
= 0.0029%

由于
$$u_{r1}(\rho)$$
 大于 $u_{r2}(\rho)$, 所以舍去 $u_{r2}(\rho)$, 只考虑 $u_{r1}(\rho)$ 。

G. 3. 2. 3 密度计测量不准引入的标准不确定度 $u_{r3}(m)$

密度计的最大允许误差为±0.001 g/cm3, 按均匀分布计算,则

$$u_{r3}(m) = \frac{0.001 \text{ g/cm}^3}{\sqrt{3} \times \overline{\rho}} \times 100\% = 0.058\%$$

G. 3. 2. 4 标准不确定度 $u_r(\rho)$ 的合成

因各输入量互不相关,所以
$$u_r(\rho) = \sqrt{u_{r1}^2(\rho) + u_{r3}^2(\rho)} = 0.065\%$$

- G. 3. 3 电子秒表引入的标准不确定度 $u_r(t)$
- G. 3. 3. 1 电子秒表分辨力引入的标准不确定度 $u_{rl}(t)$ 方法同 G.3.1.2,可得 $u_{rl}(t)$ = 0.017%
- G. 3. 3. 3 电子秒表测量不准引入的标准不确定度 u_{r} (t)

电子秒表的最大允许误差为±0.07 s, 按均匀分布计算,则

$$u_{r2}(t) = \frac{0.07 \text{ s}}{\sqrt{3} \times 60 \text{ s}} \times 100\% = 0.12 \%$$

G. 3. 3. 4 标准不确定度 $u_{r}(t)$ 的合成

因各输入量互不相关,所以
$$u_{r}(t) = \sqrt{u_{r1}^{2}(t) + u_{r2}^{2}(t)} = 0.12\%$$

G.3.4 标准不确定度u(v)的合成

$$u(v) = u_r(v) \times v = \sqrt{u_r^2(m) + u_r^2(\rho) + u_r^2(t)} \times v = 0.23\% \times 1.027 \text{ L/min} = 0.0024 \text{ L/min}$$

- G. 4 合成标准不确定度
- G. 4.1 标准不确定度汇总表

表 G. 2

不确定度来源	不确定度值
电子天平测量重复性引入的标准不确定度 $u_{rl}(m)$	0.17 %

表 G. 2 (续)

电子天平测量不准引入的标准不确定度u _{r3} (m)	0.085 %
密度计测量重复性引入的标准不确定度 <i>u_{rl}(ρ)</i>	0.03 %
密度计测量不准引入的标准不确定度 u _{r3} (m)	0.058 %
电子秒表分辨力引入的标准不确定度 $u_{rl}(t)$	0.017 %
电子秒表测量不准引入的标准不确定度u _{r2} (t)	0.12 %

G.4.2 合成标准不确定度

$$u_{c} = \sqrt{\sum_{i=1}^{n} c_{i}^{2} u^{2}(x_{i})} = \frac{v_{0}}{v^{2}} \times u(v) \times 100\% = 0.23\%$$

G.5 扩展不确定度

取包含因子 k=2,扩展不确定度: $U=k\times u_c=0.5\%$

附录 H

出水量示值误差的不确定度评定示例(直接测量法)

H. 1 测量模型

$$\Delta v = \frac{v_0 - v}{v} \times 100\% \tag{H.1}$$

式中: Δv ——纯水机出水量示值误差;

 v_0 ——纯水机流量监控值(如无流量监控值按设定值计算);

v——流量检测仪测量值。

H. 2 不确定度来源

测量结果不确定度和标准器测量重复性、分辨力、测量不准有关

H.3 标准不确定度评定

H. 3. 1 测量重复性引入的标准不确定度 $u_1(v)$

设置纯水机为1 L/min, 待纯水机出水流量稳定后, 用流量标准器重复测量出水量 10 次。测量结果见表H.1。

表 H. 1

读	数	测量值/(L/min)							平均值/	s/			
类	型	1	2	3	4	5	6	7	8	9	10	(L/min)	(L/min)
1	v_{i}	1.021	1.026	1.018	1.020	1.025	1.022	1.023	1.022	1.025	1.023	1.0225	0.0025

标准偏差由公式(H.2)计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (v_i - \overline{v})^2}{n-1}}$$
 (H.2)

实际校准时取 1 次测量值作为测量结果,则 $u_1(v) = \frac{s}{\sqrt{1}} = 0.0025 \text{ L/min}$

H.3.2 标准器分辨力引入的标准不确定度 $u_2(v)$

标准器分辨力为 0.001 L/min,则 $u_2(v) = 0.001$ L/min×0.29 = 0.00029 L/min

由于 $u_1(v)$ 大于 $u_2(v)$, 所以舍去 $u_2(v)$, 只考虑 $u_1(v)$ 。

H. 3. 3 标准器测量不准引入的标准不确定度 $u_3(v)$

标准器的最大允许误差: ±1.5%, 按均匀分布计算,则

$$u_3(v) = 1.5 \% \div \sqrt{3} \times v = 0.0089 \text{ L/min}$$

H.3.4 标准不确定度u(v)的合成

因各输入量互不相关,所以 $u(v) = \sqrt{u_1^2(v) + u_3^2(v)} = 0.0092 \text{ L/min}$

H. 4 合成标准不确定度

H. 4.1 标准不确定度汇总表

表 H. 2

不确定度来源	不确定度值	灵敏系数		
测量重复性引入的标准 不确定度 u ₁ (v)	0.0025 L/min			
标准器测量不准引入的标准不确定度 $u_3(v)$	0.0089 L/min	c ₂ : -0.9565 (L/min) -1		

H. 4.2 合成标准不确定度

$$u_{\rm c} = \sqrt{c_2^2 u^2(v)} \times 100\% = 0.88\%$$

H.5 扩展不确定度

取包含因子 k=2,扩展不确定度: $U=k\times u_c=2\%$

附录I

容量示值误差的不确定度评定示例

I.1 测量模型

$$\Delta V = \frac{V_0 - \frac{m}{\rho}}{\frac{m}{\rho}} \times 100\% \tag{I.1}$$

式中: ΔV ——纯水机流量示值误差;

m ——烧杯内纯水质量;

ρ——纯水密度;

 V_0 ——纯水机流量设定值或者监测值。

设 $V = \frac{m}{\rho}$, V为实际容量值,则可以得:

$$\Delta V = \frac{V_0 - V}{V} \times 100\% \tag{G.2}$$

I.2 不确定度来源

测量结果不确定度和测量重复性、标准器分辨力、标准器测量不准。

I.3 标准不确定度评定

纯水机流量通常为设定值,在本例中视其为常数,所以只需考虑纯水机的实际容量引入的标准不确定度u(V)。

- I. 3.1 电子天平引入的标准不确定度 $u_{\cdot}(m)$
- I. 3. 1. 1 电子天平测量重复性引入的标准不确定度 $u_{rl}(m)$

设置纯水机取水量为1 L, 待纯水机出水流量稳定后, 在纯水出口处用烧杯盛接, 用秒表计时1 min, 电子天平称量纯水的质量, 密度计测量透析液密度, 计算容量。重复测量10次。测量结果见表G.1。

表 I.1

读数		质量平	质量				
类型	1	1 2 3 4 5		均值/g	s/g		
m_i/g	1025.825	1023.118	1024.183	1021.613	1023.109	1023.9396	1.7453
$\rho_i/(g/cm^3)$	0.9970	0.9972	0.9980	0.9973			1./433
读数		密度平	密度				
类型	5	6	7	8	9	均值 /(g/cm³)	$s/(g/cm^3)$
m_i /g	1024.876	1026.452	1021.779	1025.803	1022.638	0.99738	0.000301
$\rho_i/(g/cm^3)$	0.9971	0.9973	0.9975	0.9977	0.9972	0.77/30	0.000301
纯水机的实际容量 $V=1.027\mathrm{L}$							

标准偏差由公式(G.2)计算:
$$s = \sqrt{\frac{\sum_{i=1}^{n} (m_i - \overline{m})^2}{n-1}}$$
 (G.2)

实际校准时取 1 次测量值作为测量结果,则 $u_{rl}(m) = \frac{s_m}{\sqrt{1 \times m}} \times 100\% = 0.17\%$

I.3.1.2 电子天平分辨力引入的标准不确定度 u_r 。(m)

电子天平分辨力为
$$0.001$$
 g,则 $u_{r2}(m) = \frac{0.001 \text{ g} \times 0.29}{\overline{m}} \times 100\% = 0.00003\%$ 由于 $u_{r1}(m)$ 大于 $u_{r2}(m)$,所以舍去 $u_{r2}(m)$,只考虑 $u_{r1}(m)$ 。

I. 3. 1. 3 电子天平测量不准引入的标准不确定度 $u_{rs}(m)$

电子天平级别为①级,在测量范围 2000 g< $m \le 5100$ g 内,最大允许误差为±15 mg,

按均匀分布计算,则
$$u_{r3}(m) = \frac{15 \text{ mg}}{\sqrt{3} \times m} \times 100\% = 0.085\%$$

I.3.1.4 标准不确定度 $u_r(m)$ 的合成

因各输入量互不相关,所以
$$u_{\rm r}(m) = \sqrt{u_{\rm rl}^2(m) + u_{\rm r3}^2(m)} = 0.19\%$$

- I.3.2 密度计引入的标准不确定度 $u_r(\rho)$
- I. 3. 2. 1 密度计测量重复性引入的标准不确定度 $u_{rl}(\rho)$ 方法同 G.3.2.1,可得 $u_{rl}(\rho)$ = 0.03%
- I. 3. 2. 2 密度计分辨力引入的标准不确定度 $u_{r2}(\rho)$

方法同 G.3.1.2,可得 $u_{r2}(\rho)$ = 0.0029%

由于 $u_{r1}(\rho)$ 大于 $u_{r2}(\rho)$, 所以舍去 $u_{r2}(\rho)$, 只考虑 $u_{r1}(\rho)$ 。

I. 3. 2. 3 密度计测量不准引入的标准不确定度 $u_{rs}(m)$

密度计的最大允许误差为±0.001 g/cm3,按均匀分布计算,则

$$u_{r3}(m) = \frac{0.001 \text{ g/cm}^3}{\sqrt{3} \times \overline{\rho}} \times 100\% = 0.058\%$$

I. 3. 2. 4 标准不确定度 $u_r(\rho)$ 的合成

因各输入量互不相关,所以
$$u_{\rm r}(\rho) = \sqrt{u_{\rm rl}^2(\rho) + u_{\rm r3}^2(\rho)} = 0.065\%$$

I.3.3 标准不确定度u(V) 的合成

$$u(V) = u_{\rm r}(V) \times v = \sqrt{u_{\rm r}^2(m) + u_{\rm r}^2(\rho)} \times v = 0.2 \% \times 1.027 \text{ L} = 0.0021 \text{ L}$$

I.4 合成标准不确定度

I.4.1 标准不确定度汇总表

表 1.2

不确定度来源	不确定度值		
电子天平测量重复性引入的标准不确定度u _{rl} (m)	0.17%		
电子天平测量不准引入的标准不确定度u _r ,(m)	0.085%		
密度计测量重复性引入的标准不确定度 <i>u_{rl}(ρ)</i>	0.03%		
密度计测量不准引入的标准不确定度u _{r3} (m)	0.058%		

I.4.2 合成标准不确定度

$$u_{\rm c} = \sqrt{\sum_{i=1}^{n} c_i^2 u^2(x_i)} = \frac{V_0}{V^2} \times u(V) \times 100\% = 0.2\%$$

1.5 扩展不确定度

取包含因子 k=2, 扩展不确定度: $U = k \times u_c = 0.4\%$