团体标准

T/CIAPS0043-2025

锂离子电池用芳纶涂覆隔膜

Aramid coated separators for lithium-ion batteries

2025年1月20日发布

2025年2月10日实施

目 次

前	前言	II
1	1 范围	1
2	2 规范性引用文件	1
3	3 术语和定义	1
4	4 产品标识	2
5	5 产品分类及等级	2
5.	5.1 产品分类	2
		2
6	6 要求	2
	6.1 性能要求	2
		4
7		,4
		4
	7.2 取样方法	4
		4
	7.4 试验方法	5
	7.5 判定规则	5
8	8 包装、标识、运输、贮存	6
		6
	\	6
	=	6
	8.4 贮存	6

前言

本文件按照GB/T 1.1-2020 《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由中国化学与物理电源协会提出并归口。

本文件主要起草单位:烟台泰和电池新材料科技有限公司、泰和新材集团股份有限公司。

本文件参与起草单位:河北金力新能源科技股份有限公司、安徽利科新材料科技有限公司、广州巨湾技研有限公司、泰州集萃丰芳新材料科技有限公司、湖北亿纬动力有限公司、利信(江苏)能源科技有限责任公司、江苏盛创新材科技有限公司、煤炭科学研究总院有限公司、合肥国轩高科动力能源有限公司、深圳市星源材质科技股份有限公司、常州恒锌禹晟智能装备股份有限公司、江苏绿合安科技有限公司、河北飞豹新能源科技有限公司、长虹集团等。

本文件主要起草人: 江明、关振虹、李丹、杜玉春、薛嘉渔、王国文、王晓静、邢鹏、高瑛、陈萌、王卓、相升林、刘桥、郑天华、张东、刘范芬、吴兵、谢贤莉、王莹春、张晓民。

本文件为首次发布。

锂离子电池用芳纶涂覆隔膜

1 范围

本文件规定了锂离子电池用芳纶涂覆隔膜的要求、试验方法、标识、包装、运输及储存等方面的内容。

本文件适用于3C、动力、储能等领域用锂离子电池用芳纶涂覆隔膜。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 1040.3-2006 塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件

GB/T 4146.1-2020 纺织品 化学纤维 第1部分: 属名

GB/T 6283-2008 化工产品中水分含量的测定卡尔•费休法

GB/T 6672-2001 塑料薄膜和薄片厚度测定机械测量法

GB/T 6673-2001 塑料薄膜和薄片长度和宽度的测定

GB/T 7122-1996 高强度胶粘剂剥离强度的测定 浮辊法

GB/T 8170-2008 数值修约规则与极限数值的表示和判定

GB/T 13542.2-2021 电气绝缘用薄膜第 2 部分试验方法

GB/T 31729-2015 塑料薄膜单位面积质量试验方法

GB/T 36363-2018 锂离子电池用聚烯烃隔膜

GB/T 36800.1-2018 塑料热机械分析法(TMA)第1部分: 通则

3 术语和定义

下列术语和定义适用于本文件。

3. 1

芳纶 Aramid

由酰胺键或亚酰胺键连接芳香族基团所构成的线形大分子组成的纤维,至少 85 %的酰胺键或亚酰胺键直接与两个芳环相联接,且当亚酰胺键存在时,其数值不超过酰胺键数。

[GB/T 4146.1-2020, 表 1 4.9]

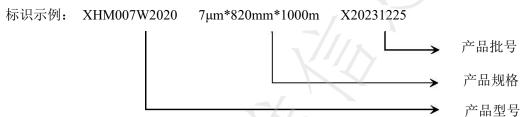
3. 2

水性涂覆 Water-based coating

是指将聚合物或其分散液分散在水中,并添加粘结剂、分散剂等助剂制备成聚合物涂覆浆料,涂覆

T/CIAPS0043-2025

在基膜后直接进行烘干。


3.3

油性涂覆 Oil-based coating

是指将聚合物溶解在有机溶剂中制备成聚合物涂覆浆料,涂覆在基膜表面,经过相转换法成膜,之 后经过烘干制成。

4 产品标识

产品标识包含产品型号、规格和批号等信息。

5 产品分类及等级

5.1 产品分类

将产品按照涂覆方式不同分为水性涂覆和油性涂覆产品。 油性涂覆产品按照性能不同分为常规型,低热缩型和高破膜型产品。

5.2 分等要求

产品质量等级分为合格品和等外品,低于合格品的为等外品。

6 要求

6.1 性能要求

6.1.1 性能

隔膜的性能应符合表1的要求。

表 1 隔膜的性能指标

检测	检测项目		单位	水性涂覆产品	油性涂覆产品		
125.0					常规	低热缩	高破膜
面密度			g/m ²	±1.0	±1.0	±1.0	±1.0
透气值		<u> </u>	s/100ml	300.0	300.0	300.0	300.0
拉伸强度	≥	MD	MPa	120.0	120.0	120.0	120.0

-	N	2.0			
			2.0	2.0	2.0
	°C	150.0	200.0	200.0	350.0
MD	%	3.0	3.0	3.0	3.0
TD	%	3.0	3.0	3.0	3.0
MD	%	5.0	10.0	3.0	3.0
TD	%	5.0	8.0	3.0	3.0
MD	%	5.0	1	5.0	5.0
TD	%	5.0	1/2	5.0	5.0
) ≥	N/m	25.0	25.0	25.0	5.0
≥	V	500	500	500	500
<u> </u>	ppm	2000	3000	3000	3000
<u>≥</u>	%	80.0	100.0	70.0	70.0
,]	TD MD TD TD ≥ ≥ ≤	TD % MD % TD % MD % TD % E N/m ≥ V ≤ ppm	TD % 3.0 MD % 5.0 TD % 5.0 MD % 5.0 TD % 5.0 \(\text{TD} \) \(\text{N/m} \) \(\text{D} \) \(\text{S} \) \(\text{D} \) \(\text{V} \) \(\text{S} \) \(\text{S} \) \(\text{D} \) \(\text{D} \) \(\text{S} \) \(\text{D} \) \(\text{S} \) \(\text{D}	TD % 3.0 3.0 MD % 5.0 10.0 TD % 5.0 8.0 MD % 5.0 / TD % 5.0 / ≥ N/m 25.0 25.0 ≥ V 500 500 ≤ ppm 2000 3000 ≥ % 80.0 100.0	TD % 3.0 3.0 3.0 MD % 5.0 10.0 3.0 TD % 5.0 8.0 3.0 MD % 5.0 / 5.0 TD % 5.0 / 5.0 ≥ N/m 25.0 25.0 25.0 ≥ V 500 500 500 ≤ ppm 2000 3000 3000 ≥ % 80.0 100.0 70.0

注: 以上数据均基于湿法聚烯烃基膜涂覆产品,基于干法聚烯烃基膜涂覆产品根据客户要求标准可做调整。

6.1.2 厚度

厚度偏差应符合表2的要求。

表 2 厚度偏差

厚度规格/μm	d ₀ ≤16	16 <d₀≤25< th=""><th>$d_0>25$</th></d₀≤25<>	$d_0>25$
平均值偏差/μm	-1.0≤∆ d ≤1.0	-1.5 <u>≤</u> ∆ d ≤1.5	-2.0≤∆ d ≤2.0
上偏差/μm ≤	2.0	2.5	3.0
下偏差/µm ≥	-2.0	-2.5	-3.0

6.1.3 宽度

宽度偏差应符合表3的要求。

表 3 宽度偏差

宽度规格/mm		b ₀ <100	100≤b ₀ <200	b₀≥200
上偏差/mm	<u>≤</u>	0.5	1.0	2.0
下偏差/mm	<u>≤</u>	0	0	0

T/CIAPS0043-2025

6.2 外观要求

6.2.1 隔膜外观

隔膜的外观应符合表4的要求,其他特殊要求按照供需双方约定执行。

表 4 隔膜外观

项目	要求
膜面不均	符合详细规范或者客户要求、采购文件
颗粒异物、机械损伤	目测不可见
针孔	放大10倍检测不可见

6.2.2 膜卷外观

膜卷外观应符合表5的要求,其他特殊要求按照供需双方约定执行。

表 5 膜卷外观

项目	要求
端面卷绕不平整度	≤1mm, 无目测可见毛刺
翘边	目测不可见
暴筋	目测不可见

7 质量保证规定

7.1 抽样规则

7.1.1 组批规则

以相同原料、同一工艺条件、同一设备连续生产的相同规格的芳纶锂电池隔膜产品为一批。

7.1.2 抽样方法

在同一批次相同规格的电池隔膜中,任意选取一卷。

7.2 取样方法

要求取样的隔膜包装完好无损。在膜卷上去掉表面三层,沿隔膜的宽度切割取样,作外观、尺寸、物理性能测试。待测隔膜,应密封包装,防止受潮和受污染。

7.3 试样状态的调节和检测的标准环境

试样应按下列条件进行状态调节和检测:

- a) 温度: (25 ±10)℃;
- b) 相对湿度: (50±20)%。

7.4 试验方法

7.4.1 厚度

按照 GB/T 6672-2001 规定进行。试样长度≤300mm,测试3点; 试样长度在300 mm和1500 mm之间,测试6点;试样长度≥1500 mm,测试9点;结果精确到小数点后1位;厚度偏差参照 GB/T 36363-2018,应符合表1的要求。

7.4.2 宽度

按照GB/T 6672-2001规定进行。宽度偏差参照 GB/T 36363-2018, 应符合表2的要求。

7.4.3 面密度

按照GB/T 31729-2015规定进行。准备至少5个样品,以平均值作为试验结果,结果精确到小数点后1位。

7.4.4 透气值

按照GB/T 36363-2018规定进行。连续测量3次,以平均值为试验结果,结果精确到小数点后1位。

7.4.5 拉伸强度

按照GB/T 1040.3-2006规定进行.其中样品尺寸为宽度(15.0±0.1)mm,连续检测3个样品,以平均值为试验结果,结果精确到小数点后 1位。

7.4.6 穿刺强度

按照GB/T 36363-2018规定进行。连续检测5次样品,以平均值作为试验结果。结果精确到小数点后1位。

7.4.7 破膜温度

按照GB/T 36800.1-2018规定进行。其中样品尺寸长×宽为8.0 mm×4.0 mm。将测量值作为测试结果,结果精确到小数点后1位。

7.4.8 热收缩率

按照GB/T 36363-2018规定进行。测量3个样品,以平均值为试验结果,结果精确到小数点后1位。

7.4.9 击穿电压

按照GB/T 13542.2-2009规定执行。

7.4.10 剥离强度

按照GB/T 7122-96规定执行。测量5个样品,以平均值为试验结果,结果精确到小数点后1位。

7.4.11 吸液性

按照GB/T 13542.2-2009规定执行,测量3个样品,以平均值为试验结果,结果精确到小数点后1位。

7.4.12 水分含量

T/CIAPS0043-2025

按照GB/T 6283-2008规定执行,测量3个样品。以平均值为试验结果,结果精确到小数点后1位。

7.4.13 外观

用目视的方法检测外观项目。

7.5 判定规则

- 7.5.1 性能项目的测定值或计算值按 GB/T 8170-2008 中修约值比较法与表 1 隔膜的性能指标的极限数值比较,评定等级。
- 7.5.2 外观项目的检验按 5.2.1 和 5.2.2 规定,逐卷评定等级。
- 7.5.3 产品综合等级的评定,以检验批中性能指标和外观指标最低项的等级定为该批产品的等级。
- 8 包装、标识、运输、贮存

8.1 包装

每卷隔膜的卷筒两端用泡棉垫圈保护固定。筒整体用 PE 膜密封,外加铝塑膜密封。纸板固定后,装入瓦楞纸箱内。纸箱用缠绕膜缠绕,用打包带固定,保证隔膜在运输、贮存过程中,不受损坏和外来物污染。

不同品种、规格、批号的产品要分别装箱, 严禁混装。

产品根据客户要求附检测报告。

特殊包装由供需双方协商。

8.2 标识

每卷隔膜的内芯管一端内,贴产品标签,注明型号、规格和批号等信息。 包装箱外应有生产企业名称、外箱标签等信息。以及"向上放置"、"注意防雨"、"轻拿轻放"等标识。

8.3 运输

运输过程中应避免碰撞、重压、受潮和高温。

8.4 贮存

隔膜应贮存在通风、阴凉、干燥、温度为不高于40 ℃、相对湿度为不高于70 % 的仓库内。严禁露天堆放、受潮和日晒。