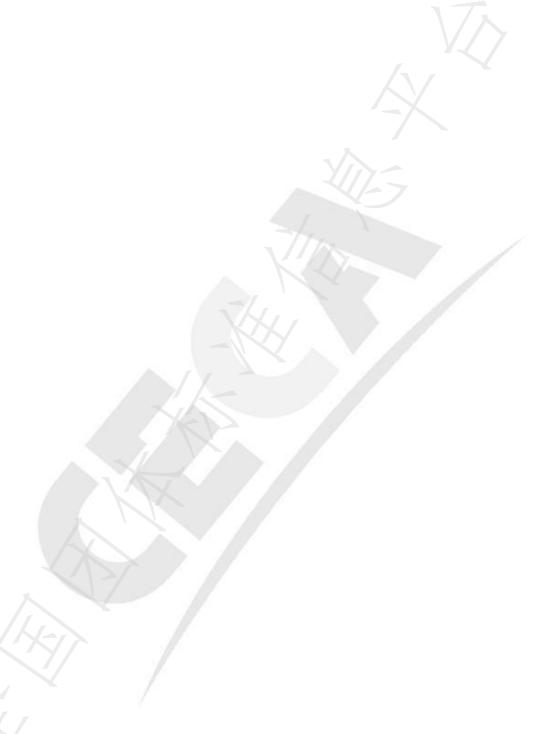


才

体

标

准


T/CECA-G 0330—2024

磁悬浮离心式鼓风机 技术条件

Technical Condition of Maglev Centrifugal Blower

2024-12-12 发布

2024-12-13 实施

版权保护文件

版权所有归属于该标准的发布机构。除非有其他规定,否则未经许可,此发行物及其章节不得以其他形式或任何手段进行复制、再版或使用,包括电子版,影印件,或发布在互联网及内部网络等。使用许可请与发布机构获取。

目 次

1	范围	
2	规范性引用文件	
3	术语和定义	
4	技术要求	
5	试验方法	
6	标志、包装、运输、贮存	

前 言

本文件按照 GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。本文件由中国节能协会提出并归口。

本文件起草单位:南京磁谷科技有限公司、南京航空航天大学、亿昇(天津)科技有限公司、国家城市污水处理及资源化工程技术研究中心、盛虹控股集团有限公司、安琪酵母股份有限公司、山东鲁抗医药股份有限公司、湖北三宁化工股份有限公司、中国标准化研究院、 机械工业节能与资源利用中心。

本文件主要起草人: 董继勇、赵学智、李振清、徐龙祥、赵跃进、沙洪磊、李洪、张雪根、代榕、 赵伟、 魏天荣、王婧、林英哲、杜志军、余知义、白根、蒋晓园、赵春生。

本文件为第一次修订。修订内容包括:新增3.10"气体多变效率"定义;修改4.2 原停电保护仅定性描述,此次做定量描述;修改4.4 标题"电机"改为"电机技术要求";修改4.6 标题"整机性能"改为"整机性能指标";修改5.1 标题"电机"改为"电机技术要求";修改5.3 标题"整机性能"改为"整机性能指标";修改5.3.1 整机效率计算增加详细说明。

磁悬浮离心式鼓风机 技术条件

1 范围

本文件规定了磁悬浮离心式鼓风机的技术要求、试验方法、检验规则及产品标志、包装、 运输及贮存等基本要求。

本文件适用于出口压力(表压)P 为 0.03Mpa \leq P \leq 0.20MPa 或压比 $1.3\leq$ e \leq 3,含尘 量 \leq 10mg/m3、输送介质为空气及其他无毒、无腐蚀性气体的磁悬浮离心式鼓风机(以下简称 鼓风机)。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适 用于本文件, 凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

- GB 5226.1 机械电气安全 机械电气设备 第1部分:通用技术条件
- GB/T 191 包装储运图示标志
- GB/T 2888 风机和罗茨鼓风机噪声测量方法
- GB/T 9239.1 机械振动 恒态(刚性)转子平衡品质要求 第1部分:规范与平衡允差的检验
- GB/T 9438 铝合金铸件
- GB/T 12325 电能质量 供电电压偏差
- GB/T 12326 电能质量 电压波动和闪变
- GB/T 13306 标牌
- GB/T 15543 电能质量 三相电压不平衡
- GB/T 22669 三相永磁同步电机试验方法
- GB/T 22711 高效三相永磁同步电动机技术条件(机座号132~80)
- GB/T 1032 三相异步电动机试验方法
- JB/T 3165 离心和轴流式鼓风机和压缩机 热力性能试验
- JB/T 4730.5 承压设备无损检测第5部分 渗透检测
- JB/T 6444 风机包装通用技术条件
- JB/T 6445 工业通风机叶轮超速试验
- JB/T 6887 风机用铸铁件技术条件
- EN 779 一般通风用空气过滤器——过滤性能的测定

3 术语和定义

下列术语和定义适用于本标准文件。

3. 1

磁悬浮轴承 magnetic bearing (简称:磁轴承)

利用可控磁力作用将转子悬浮于空中,使转子与定子之间没有机械接触的轴承,以下简 称"磁轴承"。

3. 2

磁悬浮离心式鼓风机 magnetically suspended centrifugal blower

采用由磁轴承支承的高速电机驱动的离心式鼓风机。

3. 3

整机效率 overall efficiency

鼓风机气体多变功率与整机总输入功率之比的百分数

3.4

远程监控 remote monitoring

通过网络对鼓风机的运行状态进行在线监控。

3.5

多机运行multiple unit operation

两台或两台以上鼓风机并行运行。

3.6

转子组件rotor components

鼓风机叶轮、电机转子及其他联接在一起旋转的部件组成的结构组

3.7

主动振动抑制active vibration compensation

系统主动检测转子位置,控制磁轴承的驱动电流,削减转子振动幅度。

3.8

保护轴承间隙 protective bearing clearance

转子在悬浮状态和转子在碰到保护轴承的状态,两种状态下的位移差。

3.9

通流部件 flow passage parts

鼓风机中压缩气体所通过的主要零部件。主要有叶轮、密封齿盘、扩压器、进气道、蜗壳。

3.10

气体多变功率

气体在通流部件中按多变压缩过程压缩所需的功率。

3. 11

总输入功率 total input power

鼓风机从电源上所消耗的总功率。

4 技术要求

4.1 工作条件

- 4.1.1 环境温度范围: -10℃~45℃。
- 4.1.2 相对湿度低于 95%。
- 4.1.3 供电电压偏差应符合 GB/T 12325; 三相电压不平衡应符合 GB/T 15543; 电压波动和闪变度应符合 GB/T 12326;
- 4.1.4 介质空气的含尘量和其他固体杂质的含量不大于 10mg/m³。

4.2 功能要求

鼓风机应具有:无级变速、多机并联运行、远程监控、故障报警与事件记录和防喘振等 功能,以及手动或全自动运行的功能并可切换,停电时,供磁轴承正常动作持续至转子转速降至 10r/min。

4.3 机柜设计要求

4.3.1 机柜结构设计应进行承载能力计算核准,确保机柜的强度安全系数不低于 1.2。

- 4.3.2 机柜结构设计应便于内部空气流通与交换,保证风阻小于 500Pa。
- 4.3.3 机柜进风处配备的过滤材料应达到 EN 779 中 G4 级别的要求。

4.4 电机技术要求

4.4.1 动平衡

转子组件的动平衡校正,按GB/T 9239.1 规定采用去重法或配重法校正,且:

- a) 具备主动振动抑制功能的磁轴承, 其转子组件的动平衡品质级别为G1;
- b) 不具备主动振动抑制功能的磁轴承, 其转子组件的动平衡品质级别需达到G0.4。

4.4.2 绕组温升

应符合 GB/T 22711 中 4.12 的规定。

4.4.3 磁轴承

4.4.4.1 耐温

磁轴承极绕组绝缘耐热温度应符合 180(H) 级要求。

4.4.4.2 振动

转子组件振动位移峰-峰值不得超过保护轴承间隙的 30%。

4.4.4.3 三相直流电阻不平衡度

电动机三相直流电阻应符合 GB/T 1032 中 5.2 的规定。

4.5 通流部件

4.5.1 叶轮

4.5.1.1 材料

根据需求选用铝合金、钛合金、不锈钢材料,应满足叶轮的力学性能要求。

4.5.1.2 超速试验

按 JB/T 6445 执行,试验后应采用无损探伤法进行检查。

4.5.2 蜗壳

4.5.2.1 材料

蜗壳材料可按 GB/T 9438、JB/T 6887 执行。

4.5.2.2 水压试验

蜗壳部件应经 1.3 倍设计压力的水压试验,至少保持 30min 后无泄漏和变形。

4.6 整机性能指标

4. 6. 1 整机效率

鼓风机工作在额定压力下,不同机型整机效率应符合表1要求。

表 1 不同机型整机效率

风机出口表压(kPaG)	在使用范围内鼓风机最高整机效率(%)
30≤P<60	75
60≤P<90	73
90≤P<110	72
≥110	70

4.6.2 噪声

按照 GB/T 2888 测量, 鼓风机运行在额定工作范围内的噪声不应超过85dB(A)。

4.7 产品外观与结构

产品的外表面应光洁平整,无锈蚀,不得有油污、碰伤等缺陷。涂层与构件基材结合力应牢固。装饰性涂层不允许有流挂、起泡、露底及划(碰)伤等缺陷。所有外露的螺栓长度应基本平齐。产品应具有消声装置。

4.8 安全

4.8.1 电气

产品电气控制部分以及电器的过热、过载、短路、断相等保护,应符合 GB 5226.1 的规定。

4.8.2 绝缘电阻

产品对地的绝缘电阻应不小于 1MΩ。

4.8.3 耐压

产品的导线和保护接地电路之间应能承受交流 1000V 的试验电压, 1s 内应无击穿。

5 试验方法

5.1 电机技术要求

5.1.1 动平衡

转子组件的动平衡接 GB/T 9239.1 规定进行试验。

5.1.2 绕组温升

按 GB/T 22669 中 11.3.3 的方法进行。

5.1.3 磁悬浮轴承

5.1.3.1 温度测试

鼓风机在额定工况下连续运行 1h 后,对磁轴承绕组温度进行测量。

5.1.3.2 振动

鼓风机在额定工况下连续运行 **1h** 后,采用非接触式位移传感器对其检测位置的转子组 件振动进行测量。

5.1.3.3 三相直流电阻不平衡度

按GB/T 22669 中 5.2 的方法,使用电机定子综合测量仪进行测量。

- 5.2 通流部件
- 5.2.1 叶轮
- 5.2.1.1 超速试验

按 JB/T 6445 中规定的方法进行。

5.2.1.2 无损检测

按 JB/T 4730.5 中规定的方法进行。

5.2.2 蜗壳水压试验

蜗壳应进行水压试验,试验压力为设计压力的 1.3 倍,保压 30min,检查过程中压力应保 持不变,容器无渗漏,无可见的变形和异响。

5.2.3 气动性能试验

按 JB/T 3165 规定的方法进行试验。

5.3 整机性能指标

5.3.1 整机效率

根据风机测试得到的进口压力、出口压力、进口温度、出口温度和流量,按JB/T3165的表13所列公式 计算气体多变功率,鼓风机总输入功率从风机总电源馈入处安装的功率表上读出,两者比值作为整机效率。

5.3.2 噪声

按 GB/T 2888 规定的方法进行试验。

5.5.3 保护

产品的电气控制部分以及电器的过热、过载、短路、断相等保护,应符合 GB5226.1 规定。

6 标志、包装、运输、贮存

6.1 标志

每台产品的主机和主要附属设备应在明显位置设置标牌。标牌上应注明下列内容:

- a) 产品名称及型号;
- b) 主要技术参数(额定流量、最高升压、转速、功率等);
- c)制造厂名称;
- d)产品编号及制造日期。

在每个产品的相应部位上,根据需要应有固定的标志,包括鼓风机介质进出口流动方向的指示标记、接地标记、安全警示标记。

所有标牌的尺寸规格及技术要求应符合 GB/T 13306 的规定。

包装、贮存标志应符合 GB/T 191 的规定。

6.2 包装

产品的内包装应使用塑料膜,外包装使用木箱,应符合 JB/T 6444 的规定。产品出厂时,应随产品携带以下文件:

- a) 装箱清单(包括随机附图);
- b) 产品合格证明书;

c) 产品及附属设备的安装、使用和维护说明书。

6.3 运输

产品可用一般交通工具运输。各包装件应垫平放稳,运输时应避免日晒雨淋、剧烈碰撞。

6.4 贮存

产品应贮存在干燥、通风的室内。