团 体 标准

T/CIAPS0050-2025

固定式工商业储能用锂离子电池单体质量 分级评价

Quality grading and evaluation standard for lithium-Ion batteries used in industrial and commercial stationary energy storage systems

2025年05月09日发布

2025年06月10日实施

目 次

前	f) 言
	范围
2	规范性引用文件
3	术语、定义和符号
4	评价指标及要求
	试验条件
	试验准备4
	试验方法
8	型式试验7
陈	付 录 A (资料性附录) 固定式工商业储能用锂离子电池单体质量分级评价实例
陈	 录 B (规范性) 热失控产气气体体积计算方法

前言

本文件应按照 GB/T 1.1—2020《标准化工作导则 第一部分:标准化文件的结构和起草规则》的规定起草。

本文件的某些内容可能涉及专利,本文件的发布机构不承担识别这些专利的责任。

本文件由中国化学与物理电源行业协会移动电源分会提出。

本文件由中国化学与物理电源行业协会归口。

本文件主要起草单位:深圳普瑞赛思检测科技股份有限公司、深圳市欣旺达能源科技有限公司、中国质量认证中心有限公司、西安奇点能源股份有限公司、西安建筑科技大学、深圳市新国都能源技术有限公司、欣旺达电子股份有限公司、莱茵技术监护(深圳)有限公司、无锡市检验检测认证研究院/国家高端储能产品质量检验检测中心(江苏)、中认英泰检测技术有限公司、中检集团南方测试股份有限公司、孚能科技(赣州)股份有限公司、华南理工大学、湖南麦格米特电气技术有限公司、西安交通大学、中国电力科学研究院有限公司、广州公交集团新能源发展有限责任公司、广州市公共交通集团有限公司、广州公交集团汽车服务有限公司。

本文件主要起草人:许辉勇、王敏、王驰博、王建雄、闫学兵、廖江莲、付蕊、张世杰、叶嘉明、 杜磊磊、张翼、袁欢欢、杨乃兴、王燕、陈子颖、陈涛、杨少然、黄星云、陈雄、杨智皋、顾正建、侯 逢文、将应龙、黎春根、徐华盛、郭凌云、连乾钧、张正国、凌子夜、石超、黄焱、席奂、陶以彬、杜 志伟、李超恒、曾海峰、陈武、李捷超、肖伟坚。

本文件为首次制定。

固定式工商业储能用锂离子电池单体质量分级评价

1 范围

本标准规定了固定式工商业储能用锂离子电池单体的性能质量试验方法及分级评价要求。本标准适用于固定式工商业储能产品用锂离子电池单体,仅包括磷酸铁锂体系。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅所注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

GB/T 36276-2023 电力储能用锂离子电池

DL/T 2528-2022 电力储能基本术语

UL 9540A-2025 电池储能系统热失控扩散评估方法(Test Method for Evaluating Thermal Runaway Fire Propagation in Battery Energy Storage Systems)

3 术语、定义和符号

下列术语和定义适用于本文件。

3.1 术语和定义

3. 1. 1

电池标称电压 nominal voltage of battery

标志或识别一种电池的电压值。

[来源: GB/T 36276-2023, 定义3.1.2]

3. 1. 2

初始化充电 initialized charging

规定条件下,电池放电至放电截止条件后,再充电至充电截止条件的过程。

[来源: GB/T 36276-2023, 定义3.1.3]

3. 1. 3

电池单体 secondary cell

能够进行化学能与电能进行相互转换,实现充放电的基本单元。一般由正极、负极、隔膜、电解液和壳体等组成。

[来源: DL/T 2628-2022, 定义4.2.3.1]

3. 1. 4

起火 fire

电池任何部位发生持续燃烧的现象。不包括火花、闪燃及拉弧现象。

3.1.5

爆炸 explosion

电池外壳破裂,伴随响声,且有固体物质等主要成分抛射的现象。 [来源: GB/T 36276-2023, 定义3.1.8]

3. 1. 6

漏液 liquid leakage

电池内部液体泄漏到壳体外部的现象。 [来源: GB/T 36276-2023, 定义3.1.9]

3. 1. 7

绝热温升 adiabatic temperature rise

电池单体在绝热条件下,由其内部产生或从其外部吸收的热量使电池单体表面温度升高的现象。 [来源: GB/T 36276-2023,定义3.1.10]

3. 1. 8

薄膜加热器 film heater

薄膜、胶带或其他类似薄片结构的电阻加热器,可轻松贴合电池表面。 [来源: UL 9540A-2025,定义4.9]

3. 1. 9

固定式工商业储能 stationary industrial and commercial energy storage

安装在固定的场所(如工厂、商业建筑等),利用电池储能技术,将工商业领域产生的剩余电能或可再生能源(如太阳能、风能等)转化为可储存的能量,并在需要时释放以满足工商业用户的用电需求。

3. 1. 10

自产热起始温度 self-heating initiation temperature

电池在绝热环境下,开始自发产生热量的温度点,具体定义为温升速率大于等于0.02℃/min时的温度点。

3.2 符号

下列符号适用于本文件。

Pre: 额定充电功率,单位为W,数值小数点后位数不超过2位。

Pu: 额定放电功率,单位为W,数值小数点后位数不超过2位。

Eia: 额定放电能量,单位为W·h,数值小数点后位数不超过2位。

I₁: 1h率放电电流(A), 其数值等于额定容量值。

Unou: 标称电压,单位为V,数值小数点后位数不超过2位。

Q: 额定放电容量,单位为Ah,数值小数点后位数不超过2位。

4 评价指标及要求

电池单体应在满足实际容量大于标称容量的基础上,再按照表1进行质量分级评价。

表 1 电池单体质量评价指标要求

评价指标				权重	基准值)-₽πΛ <i>(</i>) -
			单位		3 级	2级	1级	不合格判据	试验依 据
					(100分)	(75分)	(50分)		
基础	1 尺寸公差	厚度绝对偏差	mm	4%	≤0.5	≤1.2	€2		
指标		其他尺寸相对偏 差	%	4%	≤0.15	€0.4	≤1.0		7.2
	知松大社中	能量效率	%	7%	≥94.4	≥93.7	≥93	电池出现外	7.2.1
	初始充放电	能量效率极差	%	7%	≤0.5	≤1.0	≤2.0	売破裂、冒	7.3.1
		能量效率	%	7%	- ≥96	≥94.5	≥93	烟、漏液、起火、爆炸中的任意情况	722
电性	45℃充放电	能量效率极差	%	7%	≤0.5	≤1.5	≤2		7.3.2
能试	脸 5℃充放电	能量效率	%	7%	≥91	≥89	≥85		722
3₩		能量效率极差	%	7%	≤0.5	≤1.5	€2		7.3.3
	高温高湿存储	放电能量恢复率	%	7%	≥100.5	≥100.2	≥100		7.3.4
	-20℃存储	放电能量恢复率	%	7%	≥100.5	≥100.2	≥100		7.3.5
	过充	最高温度	°C	7%	≤60	≤110	≤150	电池出现起 火、爆炸、	7.4.1
	绝热温升	自产热起始温度	°C -	7%	≥135	≥120	≥110		7.4.2
安全	低温循环后绝	绝 自产热起始温度	$^{\circ}$	8%	≥130 ≤45	≥115	≥105 ≤150	防爆阀或泄	7.5
性能	热温升			070		7 110		压点之外的	7.5
试验	低温循环后外	最高温度	$^{\circ}$	7%		≤55		位置破裂中	7.6
	部短路			<u> </u>				的任意情况	
	热失控产气	单位产气量	L/Ah	7%	≤0.5	≤1.0	≤2.0	无要求	7.4.3
总分 学级		分值	≥9	5	≥80	≥70	≥60	<60)
		等级	卓越	级	优级	中等级	普通级	不合材	各

注 1:本团体标准中,厚度绝对偏差、初始充放电、45℃充放电、5℃充放电试验项目的数据,可直接引用符合 GB/T 36276-2023 《电力储能用锂离子电池》标准的试验报告数据。数据处理时,依据试验项目的特性要求选择所有测试样品中对评价指标最不利的数值,并将该极值作为本团体标准中对应试验项的评价依据。在其他尺寸偏差测试项中,分别提取所有样本的长度公差与高度公差的极值(最大值),并计算两组极值的算术平均值作为最终判定依据。

注 2: 引用的试验报告应为有效期内由具有相应资质的检测机构出具,且试验条件需符合 GB/T 36276-2023 及本团体标准的要求; 注 3: 试验过程中电池单体出现不合格判据一栏中记录的试验现象记录在附录 A表 A.1 评价示例"实际样品水平"一栏中,产品等级直接标注为不合格。

注 4: 单个指标的评分计算方式为:将该指标的实际表现值对应到其所属等级的基准值,并乘以该指标的权重。总分则是通过将所有单个指标的评分相加求和而得出,满分为 100 分。依据总分对电池单体性能分为:卓越级、优级、中等级、普通级和不合格。总分计算示例见附录 A。

5 试验条件

5.1 试验的环境条件

除非另有规定,试验应在温度15 $\mathbb{C}\sim$ 40 \mathbb{C} ,相对湿度 \leq 80%,大气压为86kPa \sim 106kPa的环境中进行。

5.2 试验设备

测量仪器应满足GB/T 36276-2023中6.1.2.1规定要求。 充放电设备应满足GB/T 36276-2023中6.1.2.2规定要求。 环境模拟装置应满足GB/T 36276-2023中6.1.2.3规定要求。 绝热模拟装置应满足GB/T 36276-2023中6.1.2.4规定要求。 短路试验装置应满足GB/T 36276-2023中6.1.2.6规定要求。 热失控试验装置应满足GB/T 36276-2023中6.1.2.13规定要求。

6 试验准备

6.1 试验样品准备

电池单体按照GB/T 36276-2023中6.2.1规定的方法进行试验样品准备。

6.2 试验线路连接

电池单体按照GB/T 36276-2023中6.2.2.1规定的方法进行试验线路连接。

6.3 初始化充电

电池单体按照GB/T 36276-2023中6.2.4.1.1规定的方法进行初始化充电。

7 试验方法

7.1 一般要求

所有试验均在有充分安全保护的环境条件下进行。

7.2 尺寸测量

按照GB/T 36276-2023中6.3.1规定进行试验,并计算厚度绝对偏差和其他尺寸相对偏差。

7.3 电性能试验

7.3.1 初始充放电

电池单体25℃初始充放电性能试验按照下列步骤进行:

a) 按照GB/T 36276-2023中6.4.1.1.1规定进行试验,计算每个试验样品初始充放电能量效率,按照公式(1)计算初始充放电能量效率极差R;

 $R = \eta_{max} - \eta_{min} \tag{1}$

式中:

R——初始充放电能量效率极差,单位为百分号(%);

η_{max}——初始充放电能量效率最大值,单位为百分号(%);

η_{min}——初始充放电能量效率最小值,单位为百分号(%)。

7.3.2 45°C充放电

电池单体 45℃充放电性能试验按照 GB/T 36276-2023 中 6.4.1.2.1 规定进行试验, 计算每个试验样品 45℃充放电能量效率和能量效率极差。

7.3.3 5℃充放电

电池单体5℃充放电性能试验按照GB/T 36276-2023中6.4.1.3.1规定进行试验, 计算每个试验样品5℃充放电能量效率和能量效率极差。

7.3.4 高温高湿存储

电池单体高温高湿存储试验按照下列步骤进行:

- a) 按照 6.3 进行电池单体初始化充电;
- b) 在温度为(60±2)℃、相对湿度为(90±3)%条件下静置 7d;
- c) 在温度为(25±2)℃、相对湿度为(70±3)%条件下静置 5h;
- d) 在(25±2)℃下,以 Prd 恒功率放电至电池单体放电截止条件,静置 10min;
- e) 在(25±2)℃下,以 Prc 恒功率充电至电池单体充电截止条件,静置 10min;
- f) 在(25±2)℃下,以 Prd 恒功率放电至电池单体放电截止条件,记录恢复放电能量 Erdl;
- g) 断开试验样品和充放电装置的连接,拆除数据采样线,取出试验样品;
- h) 重复步骤 a)~g)至所有试验样品完成试验;
- i) 以 25℃额定放电能量和步骤 f)的恢复放电能量按照公式(2)计算每个试验样品放电能量恢复率η_{re};

$$\eta_{re} = \frac{E_{rd1}}{E_{id}}.$$

式中:

η_{re}——恢复能量保持率,单位为百分号(%);

Erdl——试验后恢复放电能量,单位为瓦时(W·h)。

7.3.5 -20℃存储

电池单体-20℃存储试验按照下列步骤进行:

- a) 按照 6.3 进行电池单体初始化充电;
- b) 在温度为(-20±2)℃条件下静置 3d;
- c) 在温度为(25±2)℃条件下静置 5h;
- d) 在(25±2)℃下,以 Prd 恒功率放电至电池单体放电截止条件,静置 10min;
- e) 在(25±2)℃下,以 Pre 恒功率充电至电池单体充电截止条件,静置 10min;
- f) 在(25±2)℃下,以 Prd 恒功率放电至电池单体放电截止条件,记录恢复放电能量 Erdl;
- g) 断开试验样品和充放电装置的连接,拆除数据采样线,取出试验样品;
- h) 重复步骤 a)~g)至所有试验样品完成试验;
- i) 以 25℃额定放电能量和步骤 f)的恢复放电能量按照公式(2)计算每个试验样品放电能量恢复率η_{re}。

7.4 安全性能试验

7.4.1 过充电

电池单体过充电性能试验按照下列步骤进行:

- a) 将按照 6.3 条完成了初始化充电的电池单体与充放电装置连接;
- b) 按照 6.2 将充放电装置的电压、温度数据采样线与电池单体连接:
- c) 以 I=P_{rc}/U_{nom}恒流充电至电压达到电池单体充电截止电压的 1.5 倍或时间达到 1h 时停止充电,观察 1h,记录电流、时间、电压、试验期间电池出现的最高温度(温度传感器按照 GB/T 36276-2023 中 6.2.2.1 规定布置);
- d) 记录试验现象,包括漏液、冒烟、起火、爆炸、外壳破裂及破裂位置;
- e) 断开试验样品和充放电装置的连接,拆除数据采样线,取出试验样品;
- f) 重复步骤 a)~e)至所有试验样品完成试验。

7.4.2 绝热温升

电池单体绝热温升性能试验按照下列步骤进行:

- a) 将按照 6.3 完成了初始化充电的试验样品置于绝热模拟装置内,连接温度数据采样线;
- b) 设置绝热模拟装置试验起始温度为 40 ℃、试验温升步长为 5 ℃、试验终止温度为 130 ℃;
- c) 加热试验样品至表面温度达到 40℃时保持当前温度,静置 5h,记录时间、温度;
- d) 继续加热试验样品至表面温度达到 45℃时保持当前温度,静置 1h,记录时间、温度;
- e) 控制试验装置恒定当前温度 20min,记录时间、温度,计算自产热起始温度;
- f) 以5℃为步长逐次递增试验样品表面温度至130℃;
- g) 停止加热,待试验样品表面温度恢复至室温,拆除数据采样线,取出试验样品;
- h) 记录电池单体试验现象包括漏液、冒烟、起火、爆炸、外壳破裂及破裂位置;
- i) 重复步骤 a)~h)至所有试验样品完成试验。

7.4.3 热失控产气

电池单体产气试验按照下列步骤进行:

- a) 电池单体按 UL 9540A-2025 中 7.4.1 规定进行电池热失控产气试验;
- b) 记录罐体内环境温度 T、罐体压强 P,按照附录 B中(B.1)公式计算试验过程中产气量;
- c) 按照公式(3)计算单位产气量;

$$V_u = \frac{V_{max}}{Q_r}.$$
 (3)

式中:

Vu——单位产气量,单位为升每安时(L/Ah);

V_{max}——试验过程中产气量最大值,取公式(B.1)中产气量V最大值,单位为升(L);

- d) 拆除数据采样线,取出试验样品;
- e) 重复步骤a)~d)至所有试验样品完成试验。

7.5 低温循环后绝热温升

7.5.1 低温循环

电池单体低温循环试验按照下列步骤进行:

- a) 在温度为(-10±2)℃条件下静置 5h;
- b) 在(-10±2)℃下,以制造商规定且不小于 II₁ 的电流恒流充电至电池单体达制造商技术条件中规定的充电终止电压时转恒压充电,至充电电流降至 0.05I₁ 时停止充电;
- c) 静置 30min;
- d) 在(-10±2)℃下,以制造商规定且不小于 1I₁ 的电流放电至制造商技术条件中规定的放电终止电压:
- e) 静置 30min;
- f) 重复步骤 b)~e)循环 10 次;
- g) 待试验样品表面温度恢复至室温,拆除数据采样线,取出试验样品;
- h) 重复步骤 a)~g)至所有试验样品完成试验。

7.5.2 低温循环后绝热温升

将按照7.5.1完成了低温循环的电池单体按照7.4.2进行绝热温升试验。

7.6 低温循环后外部短路

将按照 7.5.1 完成了低温循环的电池单体按照 GB/T 36276-2023 中 6.7.1.4.1 规定进行外部短路试验,试验期间监测电池的温度变化,并记录试验期间电池出现的最高温度(温度传感器按照 GB/T 36276-2023 中 6.2.2.1 规定布置)。

8 型式试验

8.1 试验项目

表2为电池单体的型式试验项目, "样品编号"栏中"#+阿拉伯数字"为试验样品编号。试验顺序见"检验次序"栏。

表 2 电池单体型式试验

检验	检验项目	检验指标	指标要求	试验方法	样品编号	
次序	位 沙	小元 3页 1日 4分	(章条号)	(章条号)	1十四/冊 分	
	尺寸公差	厚度绝对偏差		7.2	#1-#14	
1	八寸公左	其他尺寸相对偏差		7.2		
1	かみ ない ひ	能量效率		7.2.1	#1-#14	
	初始充放电	能量效率极差	4	7.3.1		
	45 % × 14 H	能量效率		7.2.2	#1、#2、#3	
_2	45℃充放电	能量效率极差		7.3.2		
2	5℃充放电	能量效率		7.2.2	114 115 116	
\/	3 C 元 放 电	能量效率极差		7.3.3	#4、#5、#6	
3	-20℃存储 放电能量恢复率			7.3.5	#4、#5、#6	
3	高温高湿存储	放电能量恢复率		7.3.4	#7、#8、#9、#10	
	过充电	最高温度		7.4.1	#4、#5、#6	
4	绝热温升	自产热起始温度		7.4.2	#11、#12	
	热失控产气	单位产气量		7.4.3	#13、#14	

低温循环后绝热温升	自产热起始温度	7.5	#7、#8
低温循环后外部短路	最高温度	7.6	#9、#10

8.2 试验判据

- a) 常规测试项目:依据试验项的安全性或性能要求,选取所有试验样品中对评价指标最不利的试验数值作为判定依据。
- b) 其他尺寸偏差测试项:分别提取所有样本的长度公差与高度公差的极值(最大值),并计算两组极值的算术平均值作为最终判定依据;

附 录 A (资料性附录)

固定式工商业储能用锂离子电池单体质量分级评价实例

以下以 280Ah 方型电池为例,电池单体的质量分级实例见表 A.1、A.2。电池实际测试结果记录在"实际样品水平"一栏中。

示例 1:

表 A.1 电池单体质量分级评价示例

评价指标			477	基准值			实际	公 运 运 (人		
			权 重	3 级	2级 1级		· 样品 ·	单项评价		
				(100分)	(75分)	(50分)	水平	标准		
在础 尺寸公差	厚度绝对偏差	mm	4%	≤0.5	≤1.2	€2	1.5	2		
	其他尺寸相对 偏差	%	4%	≤0.15	€0.4	€1.0	0.3	3		
<i>₹</i>	能量效率	%	7%	≥94.4	≥93.7	≥93	94.5	7		
彻炉光放电	能量效率极差	%	7%	≤0.5	≤1.0	≤2.0	1.4	5.25		
45℃去盐由	能量效率	%	7%	≥96	≥94.5	≥93	96.0	5.25		
43 C允放电	能量效率极差	%	7%	≤0.5	≤1.5	€2	0.2	7		
性 试 5℃充放电 	能量效率	%	7%	≥91	≥89	≥85	91	5.25		
	能量效率极差	%	7%	≤0.5	≤1.5	€2	1.2	5.25		
高温高湿存 储	放电能量恢复 率	%	7%	≥100.5	≥100.2	≥100	101.0	7		
-20℃存储	放电能量恢复率	%	7%	≥100.5	≥100.2	≥100	101.0	7		
过充	最高温度	$^{\circ}\mathbb{C}$	7%	≤60	≤110	≤150	81.6	5.25		
绝热温升	自产热起始温 度	$^{\circ}$	7%	≥135	≥120	≥110	135	7		
热失控产气	单位产气量	L/Ah	7%	≤0.5	≤1.0	≤2.0	0.6	5.25		
低温循环后 绝热温升	自产热起始温 度	${\mathbb C}$	8%	≥130	≥115	≥105	135	8		
低温循环后 外部短路	最高温度	$^{\circ}$	7%	≤45	≤55	≤150	23.6	7		
总分				86.5						
综合评价				优级						
	尺寸公差 初始充放电 45℃充放电 5℃充放电 高温储 -20℃存储 过充 绝热温升 热失控所不后 绝热温升 低温热温环后 外部短路	尺寸公差 厚度绝对偏差 其他尺寸相对偏差 能量效率 都始充放电 能量效率极差 45℃充放电 能量效率极差 6 能量效率极差 6 放电能量效率 6 放电能量恢复率 20℃存储 放电能量恢复率 过充 最高温度 绝热温升 单位产气量 低温循环后绝热温升 自产热起始温度 低温循环后绝热温升 最高温度 低温循环后外部短路总分 总分	尺寸公差 厚度绝对偏差 mm 其他尺寸相对偏差 % 初始充放电 能量效率 % 能量效率极差 % 能量效率极差 % 能量效率极差 % 高温高湿存储 放电能量恢复率 % 立充 最高温度 % 並充 最高温度 ℃ 绝热温升 单位产气量 L/Ah 低温循环后绝热温升 度 低温循环后外部短路 最高温度 ℃ 总分	Periodic properties Periodic properties Image: periodic properties I	厚度绝对偏差 mm 4% ≤0.5 尺寸公差 其他尺寸相对偏差 % 4% ≤0.15 初始充放电 能量效率 % 7% ≥94.4 能量效率 % 7% ≥96 能量效率极差 % 7% ≥96 能量效率极差 % 7% ≥91 能量效率极差 % 7% ≥91 能量效率极差 % 7% ≥100.5 高温高湿存储 放电能量恢复率 % 7% ≥100.5 立充 最高温度 ℃ 7% ≥100.5 地产型流域 企 7% ≥100.5 地热温升度 ℃ 7% ≥135 大学产气 单位产气量 L/Ah 7% ≤0.5 低温循环后角 度 上/Ah 7% ≤0.5 低温循环后角 度 上/Ah 7% ≤0.5 低温循环后角 度 上/Ah 7% ≤45	車	車	重		

示例 2:

表 A.2 电池单体质量分级评价示例

				47	基准值			实际	英语证从
	评价指标	示	単位	权重	3 级	2级	1级	样品	单项评价 标准
					(100分)	(75分)	(50分)	水平	
基础		厚度绝对偏差	mm	4%	≤0.5	≤1.2	≤ 2	1.4	2
指标	尺寸公差	其他尺寸相对 偏差	%	4%	≤0.15	≤0.4	≤1.0	0.3	3
	知地大社由	能量效率	%	7%	≥94.4	≥93.7	≥93	94.4	5.25
	初始充放电	能量效率极差	%	7%	≤0.5	≤1.0	≤2.0	0.5	5.25
		能量效率	%	7%	≥96	≥94.5	≥93	95.7	5.25
电性	45℃充放电	能量效率极差	%	7%	≤0.5	≤1.5	€2	0.3	7
能试	·	能量效率	%	7%	≥91	≥89	≥85	91.0	7
验	5℃充放电	能量效率极差	%	7%	≤0.5	≤1.5	€2	1.6	5.25
<u> </u>	高温高湿存 储	放电能量恢复 率	%	7%	≥100.5	≥100.2	≥100	100.0	3.5
	-20℃存储	放电能量恢复 率	%	7%	≥100.5	≥100.2	≥100	103.5	7
	过充	最高温度	$^{\circ}\!\mathbb{C}$	7%	≤60	≤110	≤150	67.9	5.25
安全	绝热温升	自产热起始温 度	$^{\circ}$	7%	≥135	≥120	≥110	140	7
性能	热失控产气	单位产气量	L/Ah	7%	≤0.5	≤1.0	≤2.0	0.2	7
试验	低温循环后 绝热温升	自产热起始温 度	$^{\circ}$	8%	≥130	≥115	≥105	115	4
	低温循环后 外部短路	最高温度	C	7%	€45	≤55	≤150	起火	0
	总分	73.8							
	综合评价	不合格a							

^a电池单体低温循环后外部短路测试中出现起火现象,因此判定为不合格(依据表 1, 注 3)。

附录B (规范性附录) 热生物产气气体体和计算

热失控产气气体体积计算方法

热失控产气试验过程中,产生的气体体积 V 按照(B.1)计算:

$$V = (n_t - n_0) \cdot V_M \tag{B.1}$$

式中:

V——t 时刻产气量,单位为升(L);

V_M——理想气体摩尔体积,其值为22.4,单位为升每摩尔(L/mol);

nt——试验进行到 t 时刻时罐内气体物质的量,单位为摩尔(mol);

n₀——试验起始时刻罐内气体物质的量,单位为摩尔(mol)。

no、nt按照理想气体方程(B.2)计算:

$$n_t = \frac{P_t \cdot [V_w - V_c - V_0]}{RT_c}.$$
(B.2)

式中:

Pt——t 时刻罐内气体压强,单位为千帕(KPa);

 V_w ——罐体容积,单位为升(L);

V。——电池体积,单位为升(L);

 V_0 ——罐内其他材料体积,夹具、充电线等,单位为升(L);

R——理想气体常数, 其值为 8.314, 单位为焦耳每摩尔开尔文(J•mol-1•K-1);

 T_t —t 时刻罐内环境温度,单位为开尔文(K)。