

团 体 标 / 准

T/CASAS 035-2024

用于第三象限续流的氮化镓高电子迁移率 晶体管(HEMT)动态导通电阻测试方法

Dynamic on-resistance test method for GaN high electron mobility transistor (HEMT) in third quadrant conduction mode

2024-09-30 发布

2024-09-30 实施

目 次

前	音	. II
引	言	IV
1	范围	1
	规范性引用文件	
3	术语和定义	1
	第三象限续流电路动态导通电阻测试原理	
	测试条件	
	测试装置	
7	测试程序	5
	7.1 测试方法	
	7.2 测试流程	
8	数据记录和处理	
	试验报告	
	录 A(资料性)用于第三象限续流的 GaN HEMT 动态导通电阻测试记录表	
	考文献	

前 言

本文件按照 GB/T 1.1—2020《标准化工作导则 第1部分:标准化文件的结构和起草规则》的规定起草。

请注意本文件的某些内容可能涉及专利。本文件的发布机构不承担识别专利的责任。

本文件由北京第三代半导体产业技术创新战略联盟标准化委员会(CASAS)制定发布,版权归CASAS 所有,未经CASAS许可不得随意复制;其他机构采用本文件的技术内容制定标准需经CASAS允许;任何 单位或个人引用本文件的内容需指明本文件的标准号。

本文件主要起草单位:浙江大学、浙江大学杭州国际科创中心、广东工业大学、工业和信息化部电子第五研究所、电子科技大学、南京大学、佛山市联动科技股份有限公司、佛山市国星光电股份有限公司、西交利物浦大学、香港科技大学、深圳智芯微电子科技有限公司、深圳市大能创智半导体有限公司、华为技术有限公司、苏州能讯高能半导体有限公司、英诺赛科(苏州)半导体有限公司、纳微达斯半导体(上海)有限公司、杭州士兰微电子股份有限公司、英飞凌科技(中国)有限公司、矽力杰半导体技术(杭州)有限公司、浙江聚新汽车电子有限责任公司、连云港杰瑞电子有限公司、晟星和科技(深圳)有限公司、杭州蔚斯博系统科技有限公司、深圳英飞源技术有限公司、深圳市航嘉驰源电气股份有限公司、东莞立讯技术有限公司、深圳市振华微电子有限公司、小米通讯技术有限公司、阳光电源股份有限公司、长城电源技术有限公司、北京第三代半导体产业技术创新战略联盟。

本文件主要起草人:吴新科、董泽政、贺致远、施宜军、明鑫、周峰、刘庆源、成年斌、刘雯、孙 佳慧、温雷、谢斌、周泉斌、裴轶、林逸铭、陈常、徐迎春、贾利芳、宋清亮、赵晨、徐昌国、王廷营、 毛敏、刘钢、柳树渡、赵如、王福强、张天会、林梓彦、王腾飞、蔡磊、赵璐冰。

引 言

在电力电子变换器中,存在 GaN HEMT 工作于第三象限续流的情况。比如在图腾柱 PFC 中,为提高效率,降低反向沟道自然开通时的损耗,通常引入互补管进行同步整流。此外,在逆变器的部分模态中,GaN HEMT 也工作于第三象限续流模式。

在 GaN HEMT 功率器件的栅极信号上升以前,器件电流由源极经沟道反向导通流向漏极,且器件开通之后,器件电流持续反向流过沟道,即为第三象限续流模式。相比工作于第一象限导通,GaN HEMT 在第三象限续流时,缺少硬开通过程中的热电子冲击,器件沟道中二维电子气浓度的变化情况与第一象限导通时不同。此外,GaN HEMT 工作在第三象限续流模式时存在硬关断和零电流软关断两种模态,现有用于硬开关电路的 GaN HEMT 动态导通电阻测试方法中的测试电路无法用于实现第三象限续流模式。因此对于第三象限续流模式下的 GaN HEMT,其动态导通电阻退化问题,需要独立于第一象限结果之外单独评估。基于此,建立用于第三象限续流的 GaN HEMT 动态导通电阻测试标准具有重要意义。

本文件可用于晶圆级和封装级器件产品测试,但应考虑器件热特性,尽量减少自热效应对测试结果 带来的影响。未切割的小功率晶圆级器件相对其功率等级具有较好的散热能力,而大功率晶圆级器件和 封装级器件可能在连续大电流测试过程结温明显上升,需要进行散热处理。

用于第三象限续流的氮化镓高电子迁移率晶体管(HEMT)动态导通电阻测试方法

1 范围

本文件描述了用于第三象限续流模式(包括硬关断和零电流关断)的氮化镓高电子迁移率晶体管 (GaN HEMT) 电力电子动态导通电阻测试方法。

本文件适用于进行 GaN HEMT 的生产研发、特性表征、量产测试、可靠性评估及应用评估等工作场景。可应用于以下器件:

- a) GaN 增强型分立电力电子器件;
- b) GaN 集成功率电路;
- c) 以上的晶圆级及封装级产品。

2 规范性引用文件

下列文件中的内容通过文中的规范性引用而构成本文件必不可少的条款。其中,注日期的引用文件, 仅该日期对应的版本适用于本文件;不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。

T/CASAS 005-2022 用于硬开关电路的氮化镓高电子迁移率晶体管动态导通电阻测试方法

3 术语和定义

T/CASAS 005 界定的以及下列术语和定义适用于本文件。

3. 1

第三象限硬关断 third quadrant hard-switching off

TQ HS off

电力电子器件反向导通,并且在栅极电压下降(关断)到零后仍工作在反向续流阶段时,随后由于 桥臂互补开关开通,其反向导通电流强行截止为零、漏极电压由负值变为正值的情况。

3. 2

第三象限零电流关断 third quadrant zero-current switching off

TQ ZCS off

电力电子器件反向导通,并且在栅极电压下降(关断)过程中漏极电流已经为零的情况。

3.3

漏源极导通压降 drain to source voltage of DUT in on-state

 $V_{\mathrm{DS(on)}}$

被测器件导通状态下的源漏极压降。

T/CASAS 035-2024

3.4

漏极电流 drain current of DUT

 I_{D}

器件导通时,从漏极流入的电流值。

3.5

漏极电流的比较值 comparative value of drain current

 $I_{\rm D(com)}$

进行动态电阻测试时,控制的漏极电流值。通常需要大于器件额定电流值的10%。

3.6

预电压应力持续时间 time of pre-voltage stress

Pre-t_{stess}

被测器件在开启之前,其两端所承受的预电压应力持续时间。

3.7

预电压应力 pre-voltage stress

Pre-V_{stess}

被测器件在开启之前,其两端所承受的预电压应力幅值。

3.8

双脉冲测试 double-pulse test

DPT

在被测器件栅极施加两个开通脉冲信号,使器件实现在设定电压、电流下的动态开关测试。

3.9

多脉冲测试 multi-pulse test

MPT

在被测器件栅极施加多个持续开通脉冲信号,使器件实现在设定电压、电流下的动态开关测试。

3.10

多组脉冲测试 multi-group-pulse test

MGPT

在被测器件栅极施加多组开通脉冲信号,使器件实现在设定电压、电流下的动态开关测试。每组脉冲信号内为双脉冲或多个持续脉冲,每组间保持一定时间间隔确保散热。

3.11

多组测试之间的电压应力时间 time of voltage stress between different pulse groups

 $t_{\rm stress}$

在多组脉冲测试过程中,组与组之间的电压应力时间。

4 第三象限续流电路动态导通电阻测试原理

如图1所示,动态导通电阻测试电路可以简要划分为"主电路""被测器件(DUT)"以及"测量电路"三部分。其中,主电路负责提供器件给定工作模态所需要的电压、电流;被测器件即为所测试的GaN样品;电压、电流测试电路负责测量器件开关动作后,稳定导通时两端的 $V_{DS(on)}$ 以及 I_D ,通过 $V_{DS(on)}$ / I_D 的方式来计算器件的导通电阻。由于被测器件处于第三象限续流模式,所以实测漏源极导通压降以及漏极电流与图1中所标方向相反,即测得的 $V_{DS(on)}$ 以及 I_D 为负值。

可实现第三象限续流的测试电路有多种形式,图2(a)给出了一种最常见的半桥拓扑测试电路供参考。该测试电路由直流高压电源 $V_{\rm in}$,蓄能电容 $C_{\rm IN}$ 、 $C_{\rm IN1}$ 、 $C_{\rm IN2}$,负载电感L,桥臂上管 S_1 ,电压钳位电路与被测管DUT(S_2)组成。被测管的开关状态由信号发生装置发出的栅极脉冲信号控制。

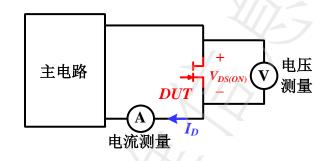
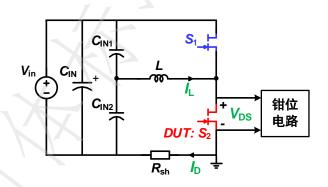
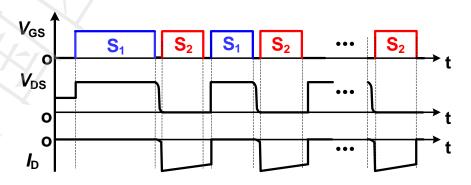
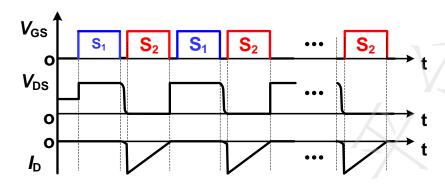




图1 动态导通电阻测试电路



(a) 电路拓扑图

(b) 第三象限硬关断时的关键波形时序图

图2 一种半桥拓扑第三象限续流测试电路

(c) 第三象限零电流关断时的关键波形时序图

图2 一种半桥拓扑第三象限续流测试电路(续)

图2(b)是采用图2(a)所示的测试电路,使被测器件工作在第三象限硬关断模式时的关键波形时序图。首先,在被测器件开启之前,先控制上管 S_1 导通一段较长时间后关断,负载电感两端电压为-1/2 V_{in} 电感电流 I_{L} 开始反向增大,电感峰值电流由- $1/2V_{in}$,L及 S_1 导通时间决定。在随后的死区时间里,电感电流 I_{L} 给被测器件 S_2 的寄生电容放电,使 S_2 两端电压 V_{DS} 开始下降。当 V_{DS} 下降到反向过零后, S_2 开始反向导通。因此,当 S_2 的门极脉冲到来时, S_2 可以实现零电压软开通。 S_2 开通后,电感电流反向减小,电感两端电压为1/2 V_{in} 。 S_2 导通一段时间后,栅极电压正常关断,但器件中仍然存在反向电流。经过死区时间后,其互补管 S_1 开通,流过 S_2 的电流被强行截止,漏极电压正向过零并迅速上升。如此反复,使 S_2 在之后的每个脉冲中,都实现了零电压软开通以及第三象限硬关断。

如图2(c)所示,是采用图2(a)所示的测试电路,使被测器件工作在第三象限零电流关断模式时的关键波形时序图。该模式初始时序与第三象限硬关断模式相同,区别在于, S_2 开通一段时间后,栅极电压正常关断,此时器件反向续流电流恰好为零。经过一段死区时间后, S_1 再次开通。如此反复,使 S_2 在之后的每个脉冲开始时,都能实现零电压软开通以及第三象限零电流关断。

5 测试条件

测试环境条件应符合以下要求:

- a) 测试环境温度要求为25 ℃±2 ℃;
- b) 测试环境相对湿度不超过65%。

6 测试装置

所使用的测试装置主要包括计算机控制及数据采集系统、电源系统、动态导通电阻测试模块及被测样品等。其典型构成图如图3所示。

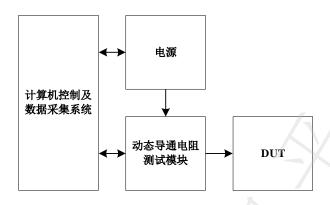
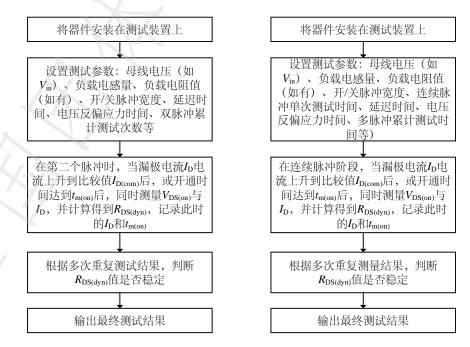


图3 动态导通电阻测试装置的典型构成

注1: 计算机控制及数据采集系统。用于自动控制动态导通电阻测试过程中的参数设置、试验波形及数据记录等;


 $extbf{ iny 22}$: 电源系统。用于为测试过程中提供漏极($V_{ extbf{DS}}$)及栅极($V_{ extbf{CS}}$)的脉冲电源;

注3: 动态导通电阻测试模块。用于实现零电压软开通电路拓扑及相关测试夹具。

7 测试程序

7.1 测试方法

器件工作于第三象限时,其动态导通电阻测试的一般方法是驱动器件在规定的开启/关断电压、开/关脉冲宽度(或占空比)、(连续脉冲测试模式中的连续脉冲单次测试时间、连续脉冲累计测试时间; 双脉冲测试模式中首个脉冲的电流、双脉冲累计测试次数)、电压反偏应力时间等条件下,实现开启时段的器件导通电压及电流等数据实时记录,从而获取动态导通电阻测试数据,其主要测试流程步骤如图4所示。

(a) 双脉冲及多组(双)脉冲测试模式

(b) 连续脉冲及多组(连续)测试模式

图4 动态导通电阻测试简化流程图

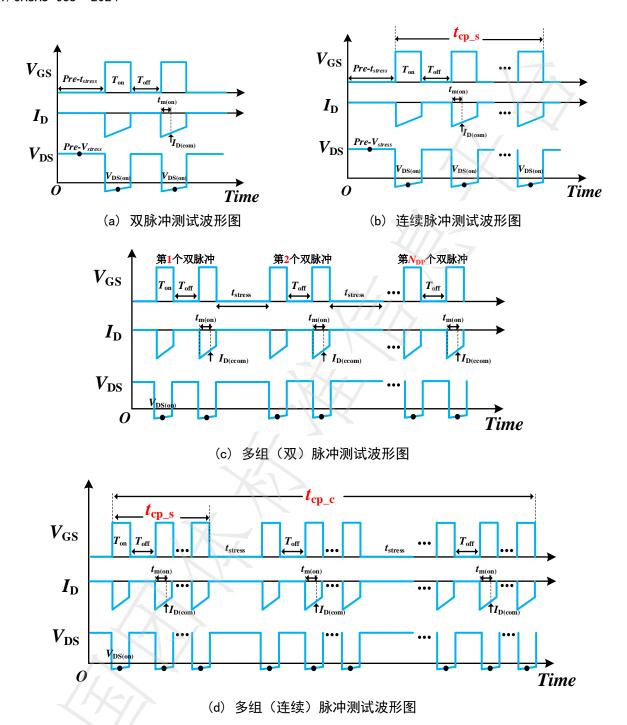


图5 第三象限硬关断过程中动态导通电阻测试典型参考波形图

目前用于动态电阻评估的方法分为双脉冲测试(DPT)、多脉冲测试(MPT)以及多组脉冲测试(MGPT)等,其中多组连续脉冲测试中每组脉冲可为双脉冲或连续脉冲。以图2(a)测试电路为基础的三种不同测试方法的参考测试波形如图5和图6所示。

双脉冲测试为经典的功率器件动态开关测试方法,可作为最基本的参考测试方法。GaN HEMT在承受一段时间的电压反偏应力作用后进行开关动作,其动态导通电阻需要经过一段时间才能达到稳定状态,

而传统的双脉冲测试方法与GaN HEMT的实际工况有偏差,因此可通过连续脉冲测试以期得到更接近真实工况的测试结果。

对于连续脉冲测试,短时间的连续开关动作容易导致芯片结温的迅速增加(GaN HEMT的静态导通电阻随结温的增加而增大),为排除结温对动态导通电阻造成的干扰,同时使测得的结果更接近稳定状态,可采用多组脉冲测试的方法。

三种测试方法各有优缺点:双脉冲测试方法简单,但不能反映动态导通电阻的稳定状态;连续脉冲测试更接近真实工况,但要注意测试过程中芯片结温上升对于结果的干扰,在具有高效散热的测试条件下十分合适;多组脉冲测试中每组脉冲为双脉冲的情况下既能保证动态电阻电阻达到稳定而结温上升可忽略,在每组脉冲间隙又能使被测器件充分降温,是比较推荐的一种测试方法,多组脉冲测试中每组脉冲为连续脉冲的测试方法同样需要注意组内被测器件结温升的干扰。

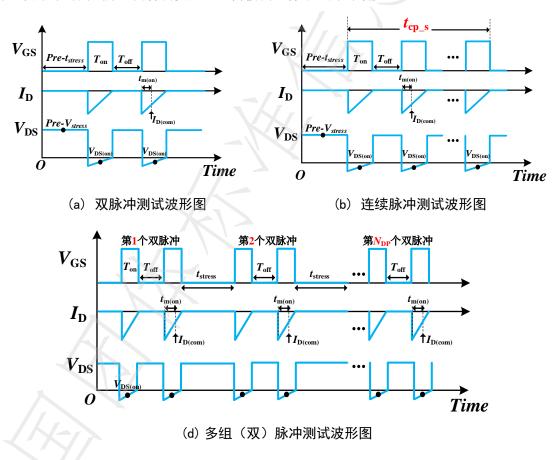


图 6 第三象限零电流关断过程中动态导通电阻测试典型参考波形图

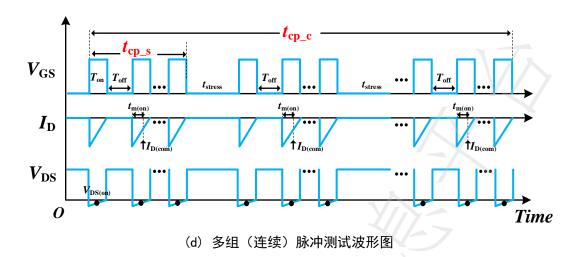


图6 第三象限零电流关断过程中动态导通电阻测试典型参考波形图(续)

7.2 测试流程

具体测试程序如下:

- a) 根据被测GaNHEMT的呈现形式(晶圆级或特定的封装结构),选择合适的探针台或测试夹具;
- b) 在控制设备上,设置相关测试参数,包括供电电压($V_{\rm in}$)、负载电感(L)、负载电阻($R_{\rm L}$,如有)、比较电流值($I_{\rm D(com)}$)、栅极工作电压 $V_{\rm GS(ON)}$ 、栅极关态电压 $V_{\rm GS(OFF)}$ 、开态脉冲宽度($t_{\rm on}$)、关态脉冲宽度($t_{\rm off}$)、预电压应力及其持续时间($Pre-V_{\rm stress}$,个 $Pre-t_{\rm stress}$)、组与组之间应力持续时间($t_{\rm stress}$)、连续脉冲测试模式中的连续脉冲单次测试时间($t_{\rm cp_s}$)、连续脉冲累计测试时间($t_{\rm cp_c}$);双脉冲测试模式中首个脉冲的电流、双脉冲累计测试次数($N_{\rm DP}$))、电压反偏应力时间($t_{\rm stress}$)、重复次数、延迟时间($t_{\rm m(on)}$)等参数;具体测试要求如下:
 - 1) 测试动态电阻时器件外壳温升(晶圆局部温升)小于5℃;
 - 2) 比较电流 $I_{D(com)}$ 应达到器件额定连续工作电流的 10%以上,推荐在器件额定连续工作电流的 50%处进行测量;源漏极压降 $V_{DS(OFF)}$ 应大于器件额定阻断电压的 20%以上。
 - 3) 第三象限硬关断的 V_{DS} 电压变化速度大于 10 V/ns,第三象限零电流关断不作要求;
 - 4) 器件开启后的钳位电路延迟时间,漏极电压、电流震荡时间均小于 1 μs;
 - 5) 针对连续脉冲测试,连续脉冲单次测试时间宜在 $100 \, \mu s \sim 1 \, s$,电压反偏应力时间应在 $50 \, ms$ 以上,连续脉冲累计测试时间宜在 $1 \, s \sim 1 \, min$,以取得稳定测试结果;
 - 6) 针对双脉冲测试, 电压反偏应力时间应在 20 ms 以上, 双脉冲累计测试次数不低于 20 次, 以取得稳定测试结果:
 - 7) 尽量降低所引入的寄生参数。
- c) 当被测器件处于导通状态且漏极导通电流 I_D 达到设定值 $I_{D(com)}$ 时,或在导通时间达到 $t_{m(on)}$ 后,同时测试被测器件的漏极导通电流 I_D 以及漏源极导通压降 $V_{DS(on)}$,计算得到动态导通电阻值 $R_{DS(dvn)}$,并记录此时的 I_D 和 $t_{m(on)}$;
- d) 根据多次重复测试结果,判断所测试的动态导通电阻 $R_{DS(dyn)}$ 值是否稳定(变化率小于3%);
- e) 结束测试,输出和记录相关测试结果及测试波形。

8 数据记录和处理

被应记录和处理的数据至少包含以下几方面:

- a) 被测试器件漏极导通电流 I_D ;
- b) 被测试器件源漏极导通压降 $V_{\mathrm{DS(on)}}$;
- c) 动态导通电阻值 $R_{\mathrm{DS(dyn)}} = V_{\mathrm{DS(on)}}/I_{\mathrm{D}}$ 。
- d) 测试延迟时间 $t_{m(on)}$ 、反向峰值电流、预应力时间等其他测试条件。

9 试验报告

试验报告至少应给出以下几方面的内容:

- a) 试验对象;
- b) 所使用的标准;
- c) 所使用的方法;
- d) 结果;
- e) 观察到的异常现象;
- f) 试验日期。

附 录 A (资料性)

用于第三象限续流的 GaN HEMT 动态导通电阻测试记录表

A. 1 用于第三象限续流的 GaN HEMT 动态导通电阻测试记录表

表A. 1 动态导通电阻测试记录表示例

产品名称			组别	X	
型号规格			纽 加		
检测项目		环	境条件		
检测日期			V//>-	b.	
测试	型号:	计量有效期		7	
仪器仪表	编号:	一	重有效期		
检测依据		-/	样品		
标准条款		1//	数量		
测试条件及技术要求	双脉冲测试模式				
	首个脉冲电流:				
	连续脉冲测试模式				
	连续脉冲单次测试时间: 连续脉冲累计测试时间:				
	多组(双)脉冲测试模式				
	首个脉冲电流: 双脉冲累计测试次数:				
	组与组之间应力持续时间($t_{ m stress}$):				
	多组(连续)脉冲测试模式				
	单组脉冲电流: 连续脉冲累计测试次数:				
	组与组之间应力持续时间($t_{ m stress}$):				
	源漏极压降(V _{DS (OFF)}):				
	电流比较值(I _{D(COM)}):				
	测试延迟时间($t_{m(on)}$):				
	负载电感量(L):				
	预电压应力持续时间(<i>Pre-t</i> _{stress}):				
	开态脉冲宽度 (t_{on}) :				
样品编号	测试结果				
	测试延迟时间 (tm(on))	电流 $I_{\mathbb{D}}$	电压V _{DS(on)}	动态导通电阻值 $R_{ m DS(dyn}$	
1					
2					
3					
1///					
	1		I		

参考文献

- [1] IEC 60747-8:2010 Semiconductor devices-Discrete device-Part 8: Field-effect transistors
- [2] JEP173:2019 Dynamic ON-Resistance Test Method Guidelines for GaN HEMT based Power Conversion Devices, Version 1.0
- [3] Cingu D, Li X, Bakeroot B, et al. Reliability of P-GaN Gate HEMTs in Reverse Conduction[J]. IEEE Transactions on Electron Devices, 2021, 68(2): 645-652
- [4] Li K, Videt A, Idir N, et al. Accurate Measurement of Dynamic On-State Resistances of GaN Devices Under Reverse and Forward Conduction in High Frequency Power Converter[J]. IEEE Transactions on Power Electronics, 2020, 35(9): 9650-9660
- [5] Z. Xie, Z. Dong, X. Wu, et al. Dynamic RDS(on) Testing for GaN Devices Considering Third Quadrant and Different Operating Conditions[C]//2022 IEEE International Power Electronics and Application Conference and Exposition (PEAC)
- [6] Z. Xie, X. Wu, Z. Dong, et al. Dynamic On-Resistance Characterization of GaN Power HEMTs Under Forward/Reverse Conduction Using Multigroup Double Pulse Test[J]. IEEE Transactions on Power Electronics, 2024, 39(2): 1963-1967