T/GAEPA

广东省汽车智能网联发展促进会团体标准

T/GAEPA 003 - 2023

智能座舱交互系统测试要求

Intelligent Cockpit Interaction System Test Requirements

(征求意见稿)

2023-*-** 发布

2023-*-** 实施

目 次

前	言	Ш
	范围	
2	规范性引用文件	
3	术语和定义	. 4
4	测试要求	<i>5</i>

前 言

本标准《智能座舱交互系统测试要求》适用于智能座舱人机交互系统测试。

本标准为统一明确智能座舱人机交互系统测试的技术要求,特制定本标准。

请注意本文件的某些内容可能涉及专利,本文件的发布单位不承担识别所涉及专利的责任。

本标准由广东省汽车智能网联发展促进会组织提出。

本标准参加单位: XXX、XXX、XXX、XXX。

本标准主要起草人: XXX、XXX、XXX、XXX。

本标准为首次制定发布。

智能座舱交互系统测试要求

1 范围

本标准规定了智能座舱交互系统各功能模块的测试标准,包括智能控制系统、智能交互系统、辅助驾驶智能系统和互联通讯系统等。

本标准适用于所有车型。

2 规范性引用文件

下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期引用文件,其最新版本(包括所有的修改单)适用于本文件。

JAMA-2008-21-0003 车内显示系统指南(Guideline for In-Vehicle Display Systems) ISO-16673-2007 道路车辆-交通信息和控制系统的人机工效方面-基于车内系统使用以达到视觉需求的遮眼测试法(Road vehicles - Ergonomic aspects of transport information and control systems - Occlusion method to assess visual demand due to the use of invehicle systems)

ISO 16750 道路车辆-电子电气产品的环境条件和试验《Road vehicles - Environmental conditions and testing for electrical and electronic equipment》

3 术语和定义

下列术语和定义适用于本文件。

3.1 车机中控系统

车机中控系统是集多源数据融合、整车管控、多媒体、导航、通讯、WIFI、多屏互动、能耗分析、驾驶行为分析、车辆性能评价、专家诊断、ADAS与V2X接入等于一体的车机控制系统。

3. 2 CAN

CAN是控制器局域网络(Controller Area Network, CAN)的简称,是由研发和生产汽车电子产品著称的德国BOSCH公司开发的,并最终成为国际标准。

3.3 OCR

OCR是Optical Character Recognition的缩写,是一种基于视觉的文字识别软件。

3.4 HMI

HMI是Human Machine Interface的缩写,人机接口,也叫人机界面,是系统和用户之间交互和信息交互的媒介。

4 测试要求

本规范的目的是规范智能座舱交互系统测试方法,从不同维度明确测试条件、测试工具、测试方法、评价原则,提高测试效率和测试完整性。具体测试方法分为两种,分别是客观数据测试评价和主观体验类测试评价,涵盖单元测试、子系统测试、整车测试三个维度。

自动化测试是基于机器视觉的测试方法,根据图文的亮度和色度特征等,形成标准数据库。再利用自动化程序控制摄像头采集被测试件图文,编成数据后进行相似度对比,一般这种相似度可以达到90%。最后判断结果,结果输出在测试面板上,通过TestStand程序控制自动形成报告。

4.1.2 自动化测试设备及工具

在开展自动化测试过程中,需要结合软硬件配合。包括LabVIEW和TestStand软件和基于NI系统集成的自动化硬件系统,硬件系统包含设备如表1。

设备名称	类型/版本号	备注
实时处理系统	NI PXEe-8840	/
可编程电阻箱	M642	/
故障注入箱	非标	/
可编程电源	TOE 8815	/
CAN板卡	NI PXI-8513/2	/
数字I/0模块	NI PXI-6528	/
模拟输出模块	NI PXI-6713	/
计数器/定时器模块	NI PXI-6624	/
面扫描相机	Basler acA1920-25gc	/
测试暗箱	非标	/

表1 自动化系统测试工具

4.1.3 自动化测试环境及硬件系统

4.1.3.1 自动化测试环境

自动化测试在自动化测试台架上实施,自动化测试必须在测试暗箱中实施,确保摄像头能清晰采集图片,并不受环境因素影响。供电电压根据被测零部件电性能要求确定,供电电压0~40V可调。

4.1.3.2 自动化测试硬件组成

自动化测试系统是一种人机交互系统,通过自动化测试程序控制测试系统电源通断和模拟信号发送,从而代替手动测试输入。自动测试还可以自动生成测试报告,以减小劳动强度,自动化测试硬件主要包括:

- 1)整个连接有NI控制机柜:包括控制电源TOE、CAN板卡、电阻板卡、数据采集卡等;
- 2)设备暗箱:包括摄像头、多功能夹具,被测试件、连接导线等;
- 3) 人机交互界面:包括上位机、测试软件程序、测试用例等。

4.1.4 自动化测试项目

自动化测试包括零部件单元测试、子系统测试两个部分,具体项目及分类如表2。

表2 自动化测试项目

测试系统	模块名称	测试项目	测试方法	评价标准
		报警指示灯	自动化测试	符合设计规范
		电源管理	自动化测试	符合设计规范
		燃油表	自动化测试	符合设计规范
		电量表	自动化测试	符合设计规范
	组合仪表	水温表	自动化测试	符合设计规范
		转速表	自动化测试	符合设计规范
		车速表	自动化测试	符合设计规范
		图文报警	自动化测试	符合设计规范
		故障注入	自动化测试	符合设计规范
		各种异常显示	自动化测试	符合设计规范
		电源适应性	自动化测试	符合设计规范
单元零部件		电源迁移性	自动化测试	符合设计规范
		收音机	自动化测试	符合设计规范
		多媒体	自动化测试	符合设计规范
	车机中控系统	咪咕	自动化测试	符合设计规范
		听伴	自动化测试	符合设计规范
		蓝牙电话	自动化测试	符合设计规范
		导航	自动化测试	符合设计规范
		系统设置	自动化测试	符合设计规范
		车辆设置	自动化测试	符合设计规范
		轮胎气压	自动化测试	符合设计规范
		故障注入	自动化测试	符合设计规范
		各种异常弹框	自动化测试	符合设计规范
	车联网	个人中心	自动化测试	符合设计规范
		天气	自动化测试	符合设计规范
		途记宝	自动化测试	符合设计规范
娱乐子系统		仪表盘上的多媒体	自动化测试	符合设计规范
195741 3 MIDE	组合仪表交互	仪表盘上的电话	自动化测试	符合设计规范
		仪表盘上的导航	自动化测试	符合设计规范
	驾驶辅助	360全景	自动化测试	符合设计规范
	空调	电动/自动空调	自动化测试	符合设计规范

- 4.1.5 组合仪表自动化测试方法及评价
- 4.1.5.1 报警指示灯测试

4.1.5.1.1 测试目的

检测仪表指示灯在仪表系统中是否能正常工作,是否满足仪表设计规范标准。

4.1.5.1.2 测试方法及评价标准

- 1) 通过自动化程序采集制定信号指示灯设计模板,其中包括图标形状、图标颜色、显示文字等;
- 2) 电源KL30长电状态正常,模拟KL15上电,指示灯自检,符合规范要求的3s内结束;
- 3) 电源反复变化, 反复切换CAN信号值, 指示灯显示颜色和图标是否与标准模板一致;
- 4) 电源正常, 反复切换CAN信号值, 指示灯显示颜色和图标是否与标准模板一致;
- 5) 电源正常,模拟信号丢失超过10个周期,指示灯显示值丢失,显示熄灭;
- 6) 电源正常,模拟信号丢失小于10个周期,指示灯显示值正常。

4.1.5.2 电源管理

4.1.5.2.1 测试目的

电源管理模式是否符合设计规范,以低压电源12V车型为例,设计规范如表3所示。

表3 组合仪表电源管理规范

电压状态	电压范围	评价规范		
	Vbatt < 6.5V			
低电压	硬件设计在6.5V以下,	电压降低到6.5V以下,屏幕电源关闭,仪表不工作。		
	屏幕电源会关闭			
	6.5V≤Vbatt<9V	电压从9V降低到6.5V时,仪表记录整车低电压DTC。指针运动		
		被冻结,扬声器停止工作,导航功能不工作。指示灯正常工		
电压不足		作,LCD背光亮度以线性方式降低,最低降至20%。CAN网络工		
电压小定		作。不支持方向盘按键操作。当电压从6.5V以下上升到7V,		
		仪表进入电压不足模式,当电压上升至9.5V之间,仪表退出		
		低电压模式。		
正常电压	9V≤Vbatt≤16V	信号指示灯、指针、扬声器、LCD和CAN网络能够正常工作。		
11. 市 屯 12.	3v ≪vbatt≪10v	可以EEPROM进行读/写操作。		
	16V < Vbatt < 18V	当电压升至超过16V,但小于18V时,仪表记录整车过电压DTC		
		。指针运动被冻结,扬声器停止工作,导航功能不工作,指		
过电压		示灯不工作,CAN网络工作,不支持方向盘按键操作。		
		当电压从18V以上降至17.5V, 仪表再次进入过电压模式。当		
		电压降低至15.5V,仪表退出过电压模式。		
高电压	Vbatt>18V	电压升至超过18V时,屏幕关闭,仪表不工作。		

4.1.5.2.2 测试方法及评价标准

- 1)设置电源电压小于6.5V,评价标准如表3;
- 2)设置电压不足,模拟电压以0.1V步进,逐渐上升或下降,评价标准如表3;
- 3)设置正常电压,模拟电压以0.1V步进,逐渐上升或下降。评价标准如表3;
- 4)设置过电压,模拟电压以0.1V步进,逐渐上升或下降。评价标准如表3。

4.1.5.3 燃油表

4.1.5.3.1 测试目的

通过电阻值输入,检测燃油表油量码格显示是否符合规范;燃油量在极限值时,油表显示是否正确。

4.1.5.3.2 测试方法与评价标准

- 1)通过自动化程序采集油量码格的像素点,制定标准模板;
- 2) 仪表电源正常,输入不同电阻值,燃油表能快速响应,燃油表显示的油量码格与标准模板一致;
- 3) 仪表电在常电, KL15上电。燃油表油量码格自检,并在3s内完成;
- 4) 仪表在阻值极限大或者小时,燃油报警灯闪烁,并提示故障。

4.1.5.4 电量表

4.1.5.4.1 测试目的

通过电量值输入,检测电量表电量码格显示是否符合规范;电量在极限值时,电量表显示是否正确。

4.1.5.4.2 测试方法与评价标准

- 1) 通过自动化程序采集电量码格的像素点,制定标准模板;
- 2) 仪表电源正常,输入不同电量值,电量表能快速响应,电量表显示的电量码格与标准模板一致;
- 3) 仪表电源在常电, KL15上电。电量表电量码格自检, 并在10s内完成;
- 4) 仪表在电量值极限大或者小时,电量报警灯闪烁,并提示故障。

4.1.5.5 水温表

4.1.5.5.1 测试目的

通过水温值输入,检测水温表码格显示是否符合规范;水温在极限值时,水温显示是否正确。

4.1.5.5.2 测试方法与评价标准

- 1) 通过自动化程序采集水温码格的像素点,制定标准模板;
- 2) 仪表电源正常,输入不同电量值,水温表能快速响应,水温表显示的水温码格与标准模板一致;
- 3) 仪表电在常电, KL15上电。水温表码格自检, 并在10s内完成;
- 4) 仪表在水温极限大或者小时,水温报警灯闪烁,并提示故障。

4.1.5.6 转速表

4.1.5.6.1 测试目的

通过转速值输入,检测转速表指针显示是否符合规范,转速在极限值时,显示是否正确。

4.1.5.6.2 测试方法与评价标准

- 1)通过自动化程序采集转速指针量化处理图标,制定标准模板;
- 2) 仪表电源正常,输入不同转速,转速表能快速响应,转速表指针显示的位置与标准模板一致;

- 3) 仪表电在常电, KL15上电。转速表指针自检, 并在10s内完成;
- 4) 仪表在转速极限大或者小时,转速值显示0或者最大值。

4.1.5.7 车速表

4.1.5.7.1 测试目的

通过车速值输入,检测车速表指针显示是否符合规范;车速在极限值时,显示是否正确。

4.1.5.7.2 测试方法与评价标准

- 1) 通过自动化程序采集车速指针量化处理图标,制定标准模板;
- 2) 仪表电源正常,输入不同转速,车速表能快速响应,车速表指针显示的位置与标准模板一致;
- 3) 仪表电在常电, KL15上电。车速表指针自检, 并在10s内完成;
- 4) 仪表在车速极限大或者小时,车速值显示0或者最大值。

4.1.5.8 图文报警

4.1.5.8.1 测试目的

通过图文报警CAN信号值输入、检测图文报警显示是否符合规范。

4.1.5.8.2 测试方法与评价标准

- 1) 通过自动化程序创建OCR字库并采集文字报警图片,制定标准模板;
- 2) 仪表电源正常,输入文字报警信号值,仪表能快速响应,文字报警显示值与标准模板一致;
- 3) 仪表电在常电, KL15上电。文字报警自检, 并在10s内完成;
- 4) 反复切换电源时,文字报警显示值正常,不会出现花屏显示不全等错误;
- 5) 电源正常时, 反复切换CAN信号值, 文字报警显示值与信号值一致。
- 6) 电源正常时,输入文字报警信号值丢失超过10个周期,文字报警不显示。
- 7) 电源正常时,输入文字报警信号值丢失不超过10个周期,文字报警正常显示。

4.1.5.9 故障注入

4.1.5.9.1 测试目的

通过模拟继电器开关不同接入方式,检测仪表对电源变化的反映情况,故障显示是否正确。

4.1.5.9.2 测试方法与评价标准

- 1) 通过自动化程序设定故障注入测试模式,制定标准模板;
- 2)输入故障为短路时,仪表显示黑屏,界面没有跳动,指示灯全部熄灭;
- 3)输入故障为断路时,仪表显示黑屏,界面没有跳动,指示灯全部熄灭;
- 4)输入故障模式为短电时,仪表显示黑屏,界面没有跳动,指示灯全部熄灭;
- 5)输入故障模式为断电时,仪表显示黑屏,界面没有跳动,指示灯全部熄灭。

4.1.5.10 各种异常显示

4.1.5.10.1 测试目的

通过异常信号或者电源输入,检测仪表故障报警和自我修复能力。

4.1.5.10.2 测试方法与评价标准

- 1)通过自动化程序采集异常输入信号或者电源,仪表显示的图标,制定标准模板;
- 2) 输入异常信号, 仪表显示异常报警与标准模板一致;

- 3)输入异常电源,仪表显示与标准模板一致;
- 4)输入正常信号,仪表能正常显示,与之前采集的正常模板一致;
- 5)输入正常的电源值,仪表正常显示,符合电源管理逻辑标准。
- 4.1.6 车机中控系统单元自动化测试
- 4.1.6.1 电源适应性测试
- 4.1.6.1.1 测试目的

通过改变电源电压值,检测车机中控系统主机电源电压适应功能,以低压电源12V车型为例。

- 4.1.6.1.2 测试方法与评价标准
- 1)低电压状态下,以步进0.5V,逐渐减少电压,车机中控系统不能正常开机,显示黑屏状态,恢复正常电压,车机中控系统能正常开机并进行工作;
- 2)在电压是6.5~9V时,以步进0.1V,逐渐增加电压,车机中控系统不能正常开机,显示黑屏状态,CAN网络正常;
- 3)在正常电压9~16V,以步进0.1V,逐渐下降或者逐渐上升,车机中控系统正常显示开机动画,画面清晰无卡顿花屏现象;
- 4)高电压状态下,以步进0.5V,逐渐增加电压,出现自动关机,网络关闭,不出现跳屏或者重启等现象。
- 4.1.6.2 电源迁移性测试
- 4.1.6.2.1 测试目的

通过输入电源值,检测车机中控系统主机开关机,休眠唤醒及记忆功能,是否与设计规范一致。

- 4.1.6.2.2 测试方法与评价标准
- 1)采集APP指令集代码,通过测试程序调用指令值(收音、蓝牙、多媒体、导航、咪咕、听伴、 天气、途记宝、系统设置、个人中心等),正常显示APP界面及各功能界面;
 - 2) 常电正常,输入IGN=ON,等待50秒,显示开机动画;
 - 3) 电源正常, 打开下拉菜单指令, 进入下拉菜单界面;
- 4) 电源正常,打开下拉菜单中指令(待机、消息、辅助功能等),正常显示待机界面或者消息弹框、或者辅助功能界面等;
 - 5) 电源正常, 车机在任何界面, 输入倒挡信号, 显示倒挡界面;
 - 6) 电源正常, 车机在倒挡界面, 输入倒挡关闭信号, 界面退出倒挡界面;
 - 7) 电源正常,输入IGN=OFF,等待50秒,车机进入休眠,CAN网络停止。
- 4.1.6.3 收音系统
- 4.1.6.3.1 测试目的

通过打开收音机系统功能指令,能够正常显示指令对应的界面功能,与标准模板显示一致。

- 4.1.6.3.2 测试方法与评价标准
 - 1) 通过自动化程序,采集收音系统设计界面图片,并制定标准模板;
 - 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
 - 3) 正常开机状态,打开收音APP指令,进入收音界面并自动搜台,与标准模板一致;

- 4) 打开播放列表,进入列表界面,显示当前搜索的电台;
- 5) 打开音效指令,界面显示声音设置界面。

4.1.6.4 多媒体系统

4.1.6.4.1 测试目的

通过打开多媒体系统功能指令,能够正常显示指令对应的界面功能,与标准模板一致。

4.1.6.4.2 测试方法与评价标准

- 1) 通过自动化程序,采集多媒体系统设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3)正常开机状态,打开多媒体APP(酷我音乐,USB,移动音乐等)指令,进入多媒体界面,并自动播放,与标准模板一致;
 - 4) 打开播放列表,进入列表界面,显示当前搜索的电台;
 - 5) 打开新歌播放指令,界面显示歌曲名称;
 - 6) 打开播放模式图标指令,实现播放模式切换,显示播放模式名称,在3s后消失;
 - 7) 打开声音设置指令,显示音量条变化,数字显示与指令输入值一致;
 - 8) 打开音乐指令,弹出网络未连接提示框,提示连接还是取消,与模板一致。

4.1.6.5 咪咕视频等多媒体音视频软件

4.1.6.5.1 测试目的

通过打开咪咕视频等多媒体音视频软件功能指令,能够正常显示指令对应的界面功能,与标准模板一致。

4.1.6.5.2 测试方法与评价标准

- 1)通过自动化程序,采集咪咕视频等多媒体音视频软件设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3)正常开机状态,打开咪咕视频等多媒体音视频软件APP指令,进入咪咕视频等多媒体音视频软件界面,与标准模板一致;
 - 4) 打开搜索功能指令,显示搜索页面;
 - 5) 打开输入地址指令,显示输入键盘;
 - 6) 打开键盘指令,显示字符与OCR字库一致;
 - 7) 打开暂停播放图标指令,实现播放模式切换并显示播放模式名称,在3s后消失。

4.1.6.6 听伴

4.1.6.6.1 测试目的

通过打开听伴功能指令,能够正常显示指令对应的界面功能,与标准模板一致。

4.1.6.6.2 测试方法与评价标准

- 1) 通过自动化程序,采集听伴设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 正常开机状态, 打开听伴APP指令, 进入听伴界面, 与标准模板一致;
- 4) 打开搜索功能指令,显示搜索页面;

- 5) 打开输入地址指令,显示输入键盘;
- 6) 打开键盘指令,显示字符与0CR字库一致;
- 7) 打开页面任意节目指令, 进入播放。

4.1.6.7 蓝牙电话

4.1.6.7.1 测试目的

通过打开蓝牙电话功能指令,能够正常显示指令对应的界面功能,与标准模板一致。

4.1.6.7.2 测试方法与评价标准

- 1) 通过自动化程序,采集蓝牙电话设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 创建关闭和打开图标,并制定标准模板;
- 4)正常开机状态,打开蓝牙电话APP指令,进入蓝牙连接界面,显示蓝牙关闭或者打开图标界面,与标准模板一致:
 - 5) 打开图标ON指令,图标显示ON,并显示蓝色;
 - 6) 打开图标OFF指令,图标显示OFF,并显示灰色;
 - 7) 打开搜索功能指令,显示搜索页面;
 - 8) 打开搜索图标指令,显示搜索页面,与标准模板一致;
 - 9) 打开连接蓝牙电话指令,显示正在连接提示框;
 - 10) 打开蓝牙配对指令,显示配对提示框。

4.1.6.8 车载导航

4.1.6.8.1 测试目的

通过打开车载导航功能指令,验证能否正常显示指令对应的界面功能,与标准模板一致。

4.1.6.8.2 测试方法与评价标准

- 1)通过自动化程序,采集车载导航设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 正常开机状态, 打开车载导航APP指令, 进入导航设置界面, 与标准模板一致;
- 4) 打开导航搜索图标指令,进入搜索对话框,与标准模板一致;
- 5) 打开搜索框任意地址指令,显示输入键盘;
- 6) 打开键盘地址指令,显示文字输入与0CR标准库一致;
- 7) 打开搜索图标指令,接入搜索结果界面,打开其中任意一条搜索结果指令,进入地图导航界面;
- 8) 打开地图界面+指令,显示地图放大,每打开一次地图放大一级;
- 9) 打开地图界面-指定,显示地图缩小,每打开一次地图缩小一级;
- 10) 打开地图设置指令,显示设置界面;
- 11) 打开设置图标指令,显示ON蓝色图标,显示OFF灰色图标。

4.1.6.9 系统设置

4.1.6.9.1 测试目的

通过打开系统设置功能指令、验证能否正常显示指令对应的界面功能、与标准模板一致。

4.1.6.9.2 测试方法与评价标准

- 1) 通过自动化程序,采集系统设置设计界面图片,并制定标准模板:
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 正常开机状态, 打开系统设置APP指令, 进入系统设置界面, 与标准模板一致;
- 4) 打开系统设置任意图标指令,进入相应的对话框,与标准模板一致;
- 5) 打开对话框任意图标指令,显示ON应为蓝色,或者显示OFF应为灰色;
- 6) 打开音量设置指令,应显示音量数字与0CR模板一致。

4.1.6.10 车辆设置

4.1.6.10.1 测试目的

通过打开车辆设置功能指令,验证能否正常显示指令对应的界面功能,与标准模板一致。

4.1.6.10.2 测试方法与评价标准

- 1) 通过自动化程序,采集车辆设置设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 正常开机状态, 打开车辆设置APP指令, 进入车辆设置界面, 与标准模板一致;
- 4) 打开系统设置任意图标指令,进入相应的对话框,与标准版一致;
- 5) 打开对话框任意图标指令,显示ON应为蓝色,或者显示OFF应为灰色;
- 6) 打开背光亮度指令,显示背光亮度数字应与OCR模板一致。

4.1.6.11 轮胎气压

4.1.6.11.1 测试目的

通过打开轮胎气压功能指令,验证能否正常显示指令对应的界面功能,与标准模板一致。

4.1.6.11.2 测试方法与评价标准

- 1) 通过自动化程序,采集轮胎气压设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3)正常开机状态,打开轮胎气压指令,进入轮胎气压界面,与标准模板一致;
- 4)进入轮胎气压界面,显示轮胎气压画面,显示轮胎气压和胎温数据,没有数据显示---;
- 5)输入轮胎气压CAN信号数据和胎温CAN信号数据,显示数据与OCR标准模板一致;温度和压力数据大于或者小于极限值,显示红色报警字体,与标准模板一致。

4.1.6.12 故障注入

4.1.6.12.1 测试目的

通过打开故障注入指令、验证车机在故障注入情况下、车机能否不被损坏及故障修复的功能。

4.1.6.12.2 测试方法与评价标准

车机故障注入测试方法与仪表故障注入测试方法一致,评价标准一致,参考4.1.5.9.2。

4.1.6.13 各种异常弹框

4.1.6.13.1 测试目的

通过打开异常指令, 验证车机在异常情况下, 车机能否提示故障信息。

4.1.6.13.2 测试方法与评价标准

- 1)输入车速CAN信号,车速值大于一定值(TBD),打开360全景指令,界面显示车速过高,不能 打开360全景故障信息;
- 2)输入车速CAN信号,车速值大于一定值(TBD),打开咪咕等视频播放软件指令,显示行驶中请勿观看视频故障信息。
- 4.1.7 子系统测试
- 4.1.7.1 个人中心
- 4.1.7.1.1 测试目的

通过打开车联网系统指令,验证车机中控系统与车联网交互界面是否正常显示,各项功能均能通过自动化测试。

- 4.1.7.1.2 测试方法与评价标准
 - 1)通过自动化程序,采集个人中心设计界面图片,并制定标准模板;
 - 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
 - 3) 正常开机状态, 打开个人中心指令, 进入个人中心界面, 显示与标准模板一致;
- 4) 打开登录功能指令,显示登录对话框,打开任一登录地址显示键盘。打开数字键盘地址,显示登录账号和密码,进入登录界面;
 - 5) 打开我的权限指令,显示权限功能设置,打开功能图标指令,显示断开或连接;
 - 6) 其他功能测试方法和评价标准,参考以上步骤1~7。
- 4.1.7.2 天气
- 4.1.7.2.1 测试目的

通过打开天气功能指令,验证能否正常显示指令对应的界面功能,与标准模板一致。

- 4.1.7.2.2 测试方法与评价标准
 - 1) 通过自动化程序,采集天气设置设计界面图片,并制定标准模板;
 - 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
 - 3) 正常开机状态, 打开天气APP指令, 进入天气界面, 与标准模板一致;
 - 4) 打开下拉页面指令, 天气界面进入刷新显示;
 - 5) 打开页面侧滑指令,进入下一个城市天气显示界面,与标准模板一致;
 - 6) 打开上滑指令,进入天气更多功能参数显示;
 - 7) 打开城市图标指令,显示城市搜索对话框;
 - 8) 打开任意地址指令,显示输入键盘,打开键盘输入地址,显示搜索文字信息与0CR字库一致。
- 4.1.7.3 途记宝
- 4.1.7.3.1 测试目的

通过打开途记宝APP指令,验证能否正常显示指令对应的界面功能,与标准模板一致。

- 4.1.7.3.2 测试方法与评价标准
 - 1) 通过自动化程序,采集途记宝设置设计界面图片,并制定标准模板;
 - 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
 - 3) 正常开机状态, 打开途记宝APP指令, 进入途记宝界面, 与标准模板一致;

- 4) 打开添加指令,显示添加途记宝;
- 5) 打开我的相册指令,进入相册查看界面,与标准模板一致;
- 6) 打开基本设置指令,进入功能设置界面,与标准模板一致。

4.1.7.4 组合仪表交互

4.1.7.4.1 测试目的

通过打开仪表显示指令,验证车机中控系统与仪表交互界面是否正常显示,各项功能均能通过自 动化测试。

4.1.7.4.2 测试方法与评价标准

- 1) 通过自动化程序,采集组合仪表交互设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3)正常开机状态,打开车机中控系统多媒体界面指令,仪表界面显示应与车机中控系统多媒体界面一致,与标准模板一致;
- 4)正常开机状态,打开车机中控系统导航界面指令,仪表界面显示应与车机中控系统导航界面一致,与标准模板一致;
- 5)正常开机状态,打开车机中控系统拨打蓝牙电话指令,仪表界面显示应与车机中控系统蓝牙电话界面一致,与标准模板一致。
- 4.1.7.5 车机中控系统与360全景交互

4.1.7.5.1 测试目的

通过打开360全景显示指令,验证车机中控系统与360全景交互界面是否正常显示,各项功能均能通过自动化测试。

4.1.7.5.2 测试方法与评价标准

- 1) 通过自动化程序,采集360全景交互界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3)正常开机状态,打开车机中控系统界面中360全景系统指令,车机中控系统显示360全景图,与标准模板一致;
 - 4)输入左右转向信号灯CAN信号,车机中控系统全景进入左右视图,与标准模板一致。

4.1.7.6 空调系统

4.1.7.6.1 测试目的

通过打开空调系统功能指令,能否正常显示指令对应的界面功能,与标准模板一致。

4.1.7.6.2 测试方法与评价标准

- 1) 通过自动化程序,采集空调系统设计界面图片,并制定标准模板;
- 2) 创建OCR字库,显示数字和字符等,并制定标准模板;
- 3) 正常开机状态, 打开空调面板指令, 进入空调设置界面, 与标准模板一致;
- 4) 打开空调任意图标指令,图标颜色由白色变为显示蓝色,与标准模板一致:
- 5) 打开风量图标指令,显示风量变化条,数值与OCR字库标准模板一致;
- 6) 打开风量数字切换指令,显示风量数字变化,数值与0CR字库标准模板一致;

7) 打开温度指令,显示温度变化条,数值显示与OCR字库标准模板一致。

4.2 主观体验类测试评价

本规范中主观体验类测试评价方法主要是依据手动测试完成,涵盖零部件单元测试、子系统测试、整车测试三个维度,具体实现在下文中阐述。

4.2.1 手动测试原理

手动测试是基于测试界面实现测试。测试工具有CANoe和LabVIEW,CANoe是兼备软件和硬件的一种测试工具,一种上位机仿真系统,手动输入信号和信号值到CANoe测试界面,由CANoe传送到被测试件,测试结果在上位机中显示。上位机测试界面是基于LabVIEW软件实现的手动输入信号和信号值,驱动CAN板卡,模拟仿真实车环境下娱乐系统的正确性。

4.2.2 测试设备及工具

手动测试设备同样需要软硬件结合,需要采用LabVIEW测试软件或者CANoe工具及软件,设计测试程序,基于NI测试板卡实现信号模拟发送测试。手动测试工具见表3。

设备	型号	备注
NI设备	包含主机、各板卡及信号转接设备	/
故障注入测试盒	Break-out box	/
设备测试集成机柜	CAEN-Testcase01	/
集成测试台架	CAEN-Bench01	/
程控电源(含82357B接口卡)	T0E8815-64	/
H&H电源	NL10V10C38	/
电阻模拟板卡	CAEN-r01	/
CANoe	V16. 0/V17. 0	/
Arbitrary power supplies测试软件	/	/

表3 手动测试工具

4.2.3 手动测试环境与硬件连接

4.2.3.1 手动测试环境

手动测试在实验室台架上测试,供电电压根据被测零部件电性能要求确定,供电电压0~40伏可调。 4.2.3.2 硬件连接

手动测试分为整车测试和台架测试两个部分。整车测试通常使用CANoe工具;台架测试使用NI公司的测试机柜,手动输入测试信号,手动记录测试结果。手动测试包括:

- 1) NI测试机柜: 包括控制电源、输入输出板卡,电路板卡等;
- 2) 测试插线板、连接导线、测试件等;
- 3) 上位机系统:包括测试软件、测试用例等。

4.2.4 手动测试项目

手动测试维度包括零部件单元测试、子系统测试、整车测试等,具体项目见表4。

表4 手动测试项目

测试系统	模块名称	功能点	子系统	测试方法	评价标准
	组合仪表	基本功能	电性能	手动测试	符合设计规范
			声音/图文报警	手动测试	符合设计规范
娱乐零部件	车机中控系统	车机中控系统 基本功能	电性能	手动测试	符合设计规范
			面板按键	手动测试	符合设计规范
			音效系统	手动测试	符合设计规范
娱乐子系统	车机中控系统	硬件交互	蓝牙电话	手动测试	符合设计规范
	TBOX	基本功能	手机APP	手动测试	符合设计规范
	组合仪表	基本功能	燃油表	手动测试	符合设计规范
			电量表	手动测试	符合设计规范
			车速表	手动测试	符合设计规范
			转速表	手动测试	符合设计规范
娱乐整车系统	车机中控系统 ————————————————————————————————————	基本功能	导航	手动测试	符合设计规范
		坐牛为化	蓝牙电话	手动测试	符合设计规范
		语音功能	语音交互	手动测试	符合设计规范
		硬件交互	360全景	手动测试	符合设计规范
			驾驶辅助	手动测试	符合设计规范
			空调系统	手动测试	符合设计规范

4.2.5 组合仪表手动测试方法及评价标准

4.2.5.1 组合仪表电性能

4.2.5.1.1 测试目的

电性能测试主要是测试硬件系统响应电源功能,表现在启动特性、电压骤降、电压升降,叠加电流性能等,能否正常工作的特性。

4.2.5.1.2 测试方法及评价标准

电性能系统测试,依据ISO 16750测试规范,本规范不再重复介绍。

4.2.5.2 组合仪表声音/图文报警

4.2.5.2.1 测试目的

通过手动模拟测试,验证声音/图文报警是否符合功能设计规范。

4.2.5.2.2 测试方法及评价标准

- 1) KL30上电, 手动输入在KL30响应报警的CAN信号名称及信号有效值, 应显示报警信号, 报警频率与设计规范一致;
- 2) KL15上电,手动输入在KL15响应报警的CAN信号名称及信号有效值,应显示报警信号,报警频率与设计规范一致;
 - 3) 手动反复切换电源,报警显示正常切换;

- 4) 手动反复切换信号值,报警显示正常。
- 4.2.6 车机中控系统手动测试方法及评价标准
- 4.2.6.1 车机中控系统电性能
- 4.2.6.1.1 测试目的

通过手动操作的方式测试车机中控系统电性能是否正常,测试值是否符合功能设计规范。

测试项目主要有高电压模式、正常电压模式、低电压模式、过电压保护、叠加交流、电压骤降、电压瞬降、启动特性测试、反向电压测试、电压漂移等。

4.2.6.1.2 测试方法

- 1)将被测试件与TOE电源端连接,保持正常开机功能;
- 2) 手动设置TOE电源,调整电压,高电压模式范围16~18V,正常电压模式范围9~16V,低电压模式范围是6.5~9V;
- 3) 打开Arbitrary power supplies软件,根据IOS-16750-WAVE协议,依次加载过电压、叠加电流、电压骤降、启动特性等波形。

4.2.6.1.3 评价标准

- 1)在高电压模式下,电压处在16~18V之间时,主机进入休眠状态,显示屏关闭,CAN网络接通状态;高于18V时,CAN网络关闭;
 - 2) 当电压调节到9~16V状态时, 主机处于正常工作状态, 显示屏正常工作;
- 3) 当电压调节到6.5~9V状态时,主机处于低电压工作状态,系统部分功能关闭,部分功能工作正常,CAN网络工作正常,低于6.5V时,CAN网络关闭,主机关闭;
 - 4) 检测过电压保护功能时,系统显示正常;
 - 5) 检测叠加电流、电压骤降、电压瞬间等波形时,系统显示正常;
 - 6)检测启动特性,电压漂移等波形时,系统显示正常。
- 4.2.6.2 车机中控系统按键测试
- 4.2.6.2.1 测试目的

通过手动操作的方式测试按键功能是否正常,测试值是否符合功能设计规范。

- 4.2.6.2.2 测试方法及评价标准
 - 1)短时操作(1s)电源按键,车机显示待机状态;
 - 2)长时操作(5s)电源按键,车机显示重启状态;
 - 3) 正常开机状态,操作home键,显示主界面;
- 4)正常开机状态,播放音源,操作音量加或者音量减,显示音量条,数字显示增减,响应音源同步增减。
- 4.2.6.3 车机中控系统音效系统测试
- 4.2.6.3.1 测试目的

音效系统测试主要是对声音性能进行主观评价,评价声音系统是否清晰,是否有POP音等缺陷。

4.2.6.3.2 测试方法及评价标准

- 1) 系统默认音量设置是16, 手动拖动音量条, 音量条顺畅不卡顿、显示正常, 声音分贝听觉效果 良好:
 - 2) 语音设置可以实现免唤醒和正常唤醒功能,语音识别率高,回复清楚;
 - 3) 系统界面清晰,分辨率高,切换界面顺畅,不卡顿不花屏;
- 4)系统联调性能中,车机中控系统切入导航界面,仪表能正常进入导航界面,蓝牙电话/多媒体/ 胎压等都能正常显示。
 - 5) 在系统联调测试中,所有HMI显示与设计一致,整个界面协调。
- 4.2.7 蓝牙电话交互系统测试及评价标准
- 4.2.7.1 测试目的

检测蓝牙电话交互功能是否符合功能设计规范,是否满足客户需求。

- 4.2.7.2 测试方法及评价标准
 - 1) 手机端操作连接蓝牙电话, 车机端显示蓝牙已连接字样或语音;
- 2)操作媒体界面,手机端来电,车机端切换至电话界面,媒体音乐暂停播放,通话结束后音乐自动播放:
- 3) 视频节目播放时,使用蓝牙电话,车机端切换至电话拨打或接听界面,视频节目暂停播放,通话结束后自动播放。
- 4)新闻播放界面时,使用蓝牙电话,车机端切换至电话拨打或接听界面,新闻暂停播放,通话结束后自动播放。
- 5)电台播放时,使用蓝牙电话,车机端切换至电话拨打或接听界面,电台暂停播报,通话结束后 自动播放。
- 6)导航正常模式时,使用蓝牙电话,车机端切换至电话拨打或接听界面,导航后台播报,通话结束后自动返回导航界面。
- 4.2.8 娱乐整车系统测试方法及评价标准
- 4.2.8.1 手机APP功能测试及评价
- 4.2.8.1.1 测试目的

检测手机APP功能是否符合功能设计规范,是否满足客户需求。

- 4.2.8.1.2 测试方法及评价标准
 - 1) 手机APP扫二维码, 能够快速响应并登陆;
 - 2) 手机APP远程查看,显示车辆状态;
 - 3) 手机APP远程控制,车辆接收到信号后显示正确状态。
- 4.2.8.2 燃油表动态测试及评价
- 4.2.8.2.1 测试目的

动态行驶中,测试燃油表响应情况及显示是否正确。

- 4.2.8.2.2 测试方法及评价标准
 - 1) 正常速度在颠簸的路面行驶,燃油表保持平稳,没有抖动;
 - 2)油箱满油,上下坡行驶或者驻坡,燃油表无偏差;

- 3)油箱半油,在颠簸的路面行驶,燃油表保持平稳,没有抖动;
- 4)油箱半油,上下坡行驶或者驻坡,燃油表无偏差;
- 5)油箱近空,在颠簸的路面行驶,燃油表保持平稳,没有抖动;
- 6)油箱近空,上下坡行驶或者驻坡,燃油表无偏差。
- 4.2.8.3 电量表动态测试及评价
- 4.2.8.3.1 测试目的

动态行驶中,测试电量表响应情况及显示是否正确。

- 4.2.8.3.2 测试方法及评价标准
 - 1) 正常行驶过程中, 电量表指针没有抖动或跳动的现象;
- 2)车辆行驶过程中,急加速急减速,指针移动顺畅、无抖动现象,仪表电量变化与CANoe监控数据一致。
- 4.2.8.4 车速表动态测试及评价
- 4.2.8.4.1 测试目的

动态行驶中,测试车速表响应情况及显示是否正确。

- 4.2.8.4.2 测试方法及评价标准
- 1)车辆行驶过程中急加速急减速,车速表数据显示移动顺畅、无抖动现象,仪表车速变化与CANoe监控数据一致;
 - 2) 车辆在颠簸的路面行驶,车速表数据显示无抖动现象;
- 3)车辆在坡道滑行或者进行加速减速行驶,车速表数据显示移动顺畅、无抖动现象,车速显示与CANoe监控数据一致。
- 4.2.8.5 转速表动态测试及评价
- 4.2.8.5.1 测试目的

动态行驶中,测试转速表响应情况及显示是否正确。

- 4.2.8.5.2 测试方法及评价标准
 - 1) 上电状态下, 急踩加速踏板/松开加速踏板, 转速表数据显示跟随性与动作保持一致;
 - 2) 正常行驶过程中,转速表数据显示没有抖动或跳动的现象。
- 4.2.8.6 车机中控系统动态测试及评价
- 4.2.8.6.1 导航动态测试及评价
- 4.2.8.6.1.1 测试目的

动态行驶中,测试导航响应情况及显示是否正确。

- 4.2.8.6.1.2 测试方法及评价标准
 - 1)上电状态下,操作设置,可以对导航模式设置、输入法设置、分辨率设置、文字类型设置等;
- 2)上电状态下,操作搜索,可以输入关键字搜索,快捷搜索,电动车充电桩充电站搜索,可以将搜索结果收藏:
 - 3) 正常行驶过程中,导航模块可以支持在线和离线计算;
 - 4) 正常行驶过程中,语音输入,导航到某某地,出现某某地界面;

- 5) 正常行驶过程中,可以实现地图比例缩放。
- 4.2.8.6.2 蓝牙电话动态测试及评价
- 4.2.8.6.2.1 测试目的

动态行驶中,测试蓝牙电话连接及响应情况是否正确。

- 4.2.8.6.2.2 测试方法及评价标准
- 1)正常行驶过程中,正常进入蓝牙界面,与手机连接成功。操作数字键盘或者语音拨打,打给某电话,实现电话拨打;
- 2)正常行驶过程中,正常进入蓝牙界面,与手机连接成功。在导航过程中,来确定或者语音拨号导航暂停播报等。通话结束后恢复导航播报;
- 3)正常倒车过程中,导航处在倒车界面中来电无响应,手机端可以接通。电话接通中,倒车车机端电话终止,倒车结束后恢复正常。通话中操作开关屏通话不受影响。
- 4.2.8.6.3 语音动态测试及评价
- 4.2.8.6.3.1 测试目的

动态行驶中,测试语音唤醒及响应情况是否正确。

- 4.2.8.6.3.2 测试方法及评价标准
- 1)正常行驶过程中,在语音唤醒后,说出提问式的说话内容,系统能识别说话内容并作出相应的语音回复,譬如说:"你好,语音助理,帮我改个名字",可以出现语音回复说:"好,你想帮我取个什么名字";
- 2)正常行驶过程中,在语音唤醒后,说出操作指令内容,系统能识别说话内容并实现相应的指令, 譬如说:"我想听某某歌曲",系统自动实现某某歌曲播放界面。
- 4.2.8.6.4 驾驶辅助动态测试及评价
- 4.2.8.6.4.1 测试目的

动态行驶中,测试驾驶辅助连接及响应情况是否正确。

- 4.2.8.6.4.2 测试方法及评价标准
- 1)车辆自动泊车过程中,操作"360全景",进入泊车系统画面,实现上下左右4个方位的视图画面,也可以单独操作1个方位的视图。操作"亮度+",泊车视图亮度增加,操作"亮度-",泊车视图亮度降低;
- 2)车辆自动泊车过程中,模拟CAN信号值等于2时,车机出现泊车界面,可以实现视图和亮度调节操作。当模拟CAN信号值不等于2时,系统退出泊车界面。泊车界面可以通过界面中2D和3D图标,实现视图转换功能。
- 4.2.8.6.5 空调系统动态测试及评价
- 4.2.8.6.5.1 测试目的

动态行驶中,测试空调系统连接及响应情况是否正确。

- 4.2.8.6.5.2 测试方法及评价标准
- 1)正常行驶过程中,按下AUTO按键,空调进入单位区或双温区自动模式。按下DUAL按键,空调进入双温区自动控制模式;

- 2)正常行驶过程中,按下主或副驾驶员鼓风机风速按键,空调进入手动操作模式。按下前除霜按键,空调进入前除霜模式。出风速度最低维持5档。
- 3)正常行驶过程中,IGN充电时,按下OFF键,空调停止出风,OFF灯亮,其他熄灭。IGN断电时,空调熄灭所有显示信息,停止出风,进入休眠状态。
- 4)正常行驶过程中,按下DUAL按键,DUAL按键指示灯亮,工作在双温区模式。按下DUAL按键,DUAL按键指示灯熄灭,工作在单温区模式。按下副驾驶设定温度按键,或者转动副驾驶设定温度按钮,DUAL指示灯亮。按下按键,AC指示灯常亮,工作在自动调节模式,主副驾驶侧可分开调节。DUAL按键指示灯亮,AUTO指示灯亮。
- 5)正常行驶过程中,自动调节出风温度、出风速度、出风模式,以达到设定温度。按下前除霜按键,前除霜指示灯常亮,出风模式工作自动调节到前除霜模式,出风速度最低维持5档。
- 6)正常行驶过程中,调节旋钮可以调节副驾驶设定温度: high $(32 \degree)$ ~low $(18 \degree)$ 间隔0.5 \degree , DUAL指示灯亮。
- 7)正常行驶过程中,按下驾驶座椅加热按键,驾驶座椅加热指示灯亮,空调启动驾驶员座椅加热功能。再按下驾驶座椅加热按键,驾驶座椅加热按键指示灯灭,空调关闭驾驶员座椅加热功能。
- 8)正常行驶过程中,AUT0状态时,根据计算值自动控制风门模式,当设定温度在17.5℃~31.5℃时,风门根据计算值自动切换。
 - 8)正常行驶过程中,按下OFF键,系统进入OFF状态时,出风模式维持当前状态;
 - 9) 在任何情况下,手动操作MODE键,为优先处理。